Spike Protein
Recently Published Documents


TOTAL DOCUMENTS

3884
(FIVE YEARS 3469)

H-INDEX

85
(FIVE YEARS 49)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saleh S. Alarfaji ◽  
Sajjad Hussain ◽  
Abdullah G. Al-Sehemi ◽  
Shabbir Muhammad ◽  
Islam Ullah Khan ◽  
...  

Abstract In the present study, copper (II) complex of 4, 4′-di-tert-butyl-2,2′-bipyridine [Cu (C18H24N2) (NO3)2], 1 is investigated through its synthesis and characterization using elemental analysis technique, infra-red spectroscopy, and single-crystal analysis. The compound 1 crystallizes in orthorhombic space group P212121. The copper atom in the mononuclear complex is hexa coordinated through two nitrogen and four oxygen atoms from bipyridine ligand and nitrate ligands. The thermal analysis depicts the stability of the entitled compound up to 170 °C, and the decomposition takes place in different steps between 170 and 1000 °C. Furthermore, quantum chemical techniques are used to study optoelectronic, nonlinear optical, and therapeutic bioactivity. The values of isotropic and anisotropic linear polarizabilities of compound 1 are calculated as 41.65 × 10−24 and 23.02 × 10−24 esu, respectively. Likewise, the static hyperpolarizability is calculated as 47.92 × 10−36 esu using M06 functional compared with para-nitroaniline (p-NA) and found several times larger than p-NA. Furthermore, the antiviral potential of compound 1 is studied using molecular docking technique where intermolecular interactions are checked between the entitled compound and two crucial proteins of SARS-CoV-2 (COVID-19). Our investigation indicated that compound 1 interacts more vigorously to spike protein than main protease (MPro) due to its better binding energy of −9.60 kcal/mol compared with −9.10 kcal/mol of MPro. Our current study anticipated that the above-entitled coordination complexes could be potential candidates for optoelectronic properties and their biological activity.


2021 ◽  
pp. 104063872110578
Author(s):  
Jorge Pulido ◽  
Marga García-Durán ◽  
Ricardo Fernández-Antonio ◽  
Carmen Galán ◽  
Lissette López ◽  
...  

During the COVID-19 pandemic, infection of farmed mink has become not only an economic issue but also a widespread public health concern. International agencies have advised the use of strict molecular and serosurveillance methods for monitoring the SARS-CoV2 status on mink farms. We developed 2 ELISAs and a duplex protein microarray immunoassay (MI), all in a double-recognition format (DR), to detect SARS-CoV2 antibodies specific to the receptor-binding domain (RBD) of the spike protein and to the full-length nucleoprotein (N) in mink sera. We collected 264 mink serum samples and 126 oropharyngeal samples from 5 Spanish mink farms. In both of the ELISAs and the MI, RBD performed better than N protein for serologic differentiation of mink from SARS-CoV2–positive and –negative farms. Therefore, RBD was the optimal antigenic target for serosurveillance of mink farms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei-Shuo Lin ◽  
I-Chen Chen ◽  
Hui-Chen Chen ◽  
Yi-Chien Lee ◽  
Suh-Chin Wu

Glycan-masking the vaccine antigen by mutating the undesired antigenic sites with an additional N-linked glycosylation motif can refocus B-cell responses to desired epitopes, without affecting the antigen’s overall-folded structure. This study examined the impact of glycan-masking mutants of the N-terminal domain (NTD) and receptor-binding domain (RBD) of SARS-CoV-2, and found that the antigenic design of the S protein increases the neutralizing antibody titers against the Wuhan-Hu-1 ancestral strain and the recently emerged SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Our results demonstrated that the use of glycan-masking Ad-S-R158N/Y160T in the NTD elicited a 2.8-fold, 6.5-fold, and 4.6-fold increase in the IC-50 NT titer against the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) variants, respectively. Glycan-masking of Ad-S-D428N in the RBD resulted in a 3.0-fold and 2.0-fold increase in the IC-50 neutralization titer against the Alpha (B.1.1.7) and Beta (B.1.351) variants, respectively. The use of glycan-masking in Ad-S-R158N/Y160T and Ad-S-D428N antigen design may help develop universal COVID-19 vaccines against current and future emerging SARS-CoV-2 variants.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260360
Author(s):  
Ehsan Ahmadi ◽  
Mohammad Reza Zabihi ◽  
Ramin Hosseinzadeh ◽  
Leila Mohamed Khosroshahi ◽  
Farshid Noorbakhsh

Recent emergence of SARS-CoV-2 and associated COVID-19 pandemic have posed a great challenge for the scientific community. In this study, we performed bioinformatic analyses on SARS-CoV-2 protein sequences, trying to unravel potential molecular similarities between this newly emerged pathogen with non-coronavirus ssRNA viruses. Comparing the proteins of SARS-CoV-2 with non-coronavirus positive and negative strand ssRNA viruses revealed multiple sequence similarities between SARS-CoV-2 and non-coronaviruses, including similarities between RNA-dependent RNA-polymerases and helicases (two highly-conserved proteins). We also observed similarities between SARS-CoV-2 surface (i.e. spike) protein with paramyxovirus fusion proteins. This similarity was restricted to a segment of spike protein S2 subunit which is involved in cell fusion. We next analyzed spike proteins from SARS-CoV-2 “variants of concern” (VOCs) and “variants of interests” (VOIs) and found that some of these variants show considerably higher spike-fusion similarity with paramyxoviruses. The ‘spike-fusion’ similarity was also observed for some pathogenic coronaviruses other than SARS-CoV-2. Epitope analysis using experimentally verified data deposited in Immune Epitope Database (IEDB) revealed that several B cell epitopes as well as T cell and MHC binding epitopes map within the spike-fusion similarity region. These data indicate that there might be a degree of convergent evolution between SARS-CoV-2 and paramyxovirus surface proteins which could be of pathogenic and immunological importance.


2021 ◽  
Author(s):  
Ting-Yu Yeh ◽  
Gregory P. Contreras

On 26 November 2021, the World Health Organization designated the SARS-CoV-2 variant B.1.1.529, Omicron, a variant of concern. However, the phylogenetic and evolutionary dynamics of this variant remain unclear. An analysis of the 131 Omicron variant sequences from November 9 to November 28, 2021 reveals that variants have diverged into at least 6 major subgroups. 86.3% of the cases have an insertion at amino acid 214 (INS214EPE) of the spike protein. Neutrality analysis of DH (-2.814, p<0.001) and Zeng E (0.0583, p=1.0) tests suggested that directional selection was the major driving force of Omicron variant evolution. The synonymous (Dsyn) and nonsynonymous (Dnonsyn) polymorphisms of the Omicron variant spike gene were estimated with Tajima D statistic to eliminate homogenous effects. Both D ratio (Dnonsyn/Dsyn, 1.57) and DD (Dsyn-Dnonsyn, 0.63) indicate that purifying selection operates at present. The low nucleotide diversity (0.00008) and Tajima D value (-2.709, p<0.001) also confirms that Omicron variants had already spread in human population for more than the 6 weeks than has been reported. These results, along with our previous analysis of Delta and Lambda variants, also supports the validity of the Tajima D test score, with a threshold value as -2.50, as an accurate predictor of new COVID-19 outbreaks.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260714
Author(s):  
Bastien Paré ◽  
Marieke Rozendaal ◽  
Sacha Morin ◽  
Léa Kaufmann ◽  
Shawn M. Simpson ◽  
...  

The first confirmed case of COVID-19 in Quebec, Canada, occurred at Verdun Hospital on February 25, 2020. A month later, a localized outbreak was observed at this hospital. We performed tiled amplicon whole genome nanopore sequencing on nasopharyngeal swabs from all SARS-CoV-2 positive samples from 31 March to 17 April 2020 in 2 local hospitals to assess viral diversity (unknown at the time in Quebec) and potential associations with clinical outcomes. We report 264 viral genomes from 242 individuals–both staff and patients–with associated clinical features and outcomes, as well as longitudinal samples and technical replicates. Viral lineage assessment identified multiple subclades in both hospitals, with a predominant subclade in the Verdun outbreak, indicative of hospital-acquired transmission. Dimensionality reduction identified two subclades with mutations of clinical interest, namely in the Spike protein, that evaded supervised lineage assignment methods–including Pangolin and NextClade supervised lineage assignment tools. We also report that certain symptoms (headache, myalgia and sore throat) are significantly associated with favorable patient outcomes. Our findings demonstrate the strength of unsupervised, data-driven analyses whilst suggesting that caution should be used when employing supervised genomic workflows, particularly during the early stages of a pandemic.


Author(s):  
Hitoshi Kawasuji ◽  
Yoshitomo Morinaga ◽  
Hideki Tani ◽  
Yumiko Saga ◽  
Makito Kaneda ◽  
...  

Since mRNA vaccines utilize wild-type SARS-CoV-2 spike protein as an antigen, there are potential concerns about acquiring immunity to variants of this virus. The neutralizing activity in BNT162b2-vaccinated individuals was higher against the wild-type virus than against its variants; this effect was more apparent in older age groups.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dukas Jurėnas ◽  
Leonardo Talachia Rosa ◽  
Martial Rey ◽  
Julia Chamot-Rooke ◽  
Rémi Fronzes ◽  
...  

AbstractBacteria have evolved toxins to outcompete other bacteria or to hijack host cell pathways. One broad family of bacterial polymorphic toxins gathers multidomain proteins with a modular organization, comprising a C-terminal toxin domain fused to a N-terminal domain that adapts to the delivery apparatus. Polymorphic toxins include bacteriocins, contact-dependent growth inhibition systems, and specialized Hcp, VgrG, PAAR or Rhs Type VI secretion (T6SS) components. We recently described and characterized Tre23, a toxin domain fused to a T6SS-associated Rhs protein in Photorhabdus laumondii, Rhs1. Here, we show that Rhs1 forms a complex with the T6SS spike protein VgrG and the EagR chaperone. Using truncation derivatives and cross-linking mass spectrometry, we demonstrate that VgrG-EagR-Rhs1 complex formation requires the VgrG C-terminal β-helix and the Rhs1 N-terminal region. We then report the cryo-electron-microscopy structure of the Rhs1-EagR complex, demonstrating that the Rhs1 central region forms a β-barrel cage-like structure that encapsulates the C-terminal toxin domain, and provide evidence for processing of the Rhs1 protein through aspartyl autoproteolysis. We propose a model for Rhs1 loading on the T6SS, transport and delivery into the target cell.


Sign in / Sign up

Export Citation Format

Share Document