scholarly journals Extracting MAX-pooling receptive fields with natural image fragments

Author(s):  
Tanifuji Manabu
2000 ◽  
Vol 12 (3) ◽  
pp. 565-596 ◽  
Author(s):  
Chris J. S. Webber

Symmetry networks use permutation symmetries among synaptic weights to achieve transformation-invariant response. This article proposes a generic mechanism by which such symmetries can develop during unsupervised adaptation: it is shown analytically that spontaneous symmetry breaking can result in the discovery of unknown invariances of the data's probability distribution. It is proposed that a role of sparse coding is to facilitate the discovery of statistical invariances by this mechanism. It is demonstrated that the statistical dependences that exist between simple-cell-like threshold feature detectors, when exposed to temporally uncorrelated natural image data, can drive the development of complex-cell-like invariances, via single-cell Hebbian adaptation. A single learning rule can generate both simple-cell-like and complex-cell-like receptive fields.


2009 ◽  
Vol 21 (10) ◽  
pp. 2805-2845 ◽  
Author(s):  
Jörg Lücke

We study a dynamical model of processing and learning in the visual cortex, which reflects the anatomy of V1 cortical columns and properties of their neuronal receptive fields. Based on recent results on the fine-scale structure of columns in V1, we model the activity dynamics in subpopulations of excitatory neurons and their interaction with systems of inhibitory neurons. We find that a dynamical model based on these aspects of columnar anatomy can give rise to specific types of computations that result in self-organization of afferents to the column. For a given type of input, self-organization reliably extracts the basic input components represented by neuronal receptive fields. Self-organization is very noise tolerant and can robustly be applied to different types of input. To quantitatively analyze the system's component extraction capabilities, we use two standard benchmarks: the bars test and natural images. In the bars test, the system shows the highest noise robustness reported so far. If natural image patches are used as input, self-organization results in Gabor-like receptive fields. In quantitative comparison with in vivo measurements, we find that the obtained receptive fields capture statistical properties of V1 simple cells that algorithms such as independent component analysis or sparse coding do not reproduce.


2013 ◽  
Vol 1536 ◽  
pp. 53-67 ◽  
Author(s):  
Chris Häusler ◽  
Alex Susemihl ◽  
Martin P. Nawrot

2009 ◽  
Vol 26 (1) ◽  
pp. 93-108 ◽  
Author(s):  
SHENG ZHANG ◽  
CRAIG K. ABBEY ◽  
MIGUEL P. ECKSTEIN

AbstractThe neural mechanisms driving perception and saccades during search use information about the target but are also based on an inhibitory surround not present in the target luminance profile (e.g., Eckstein et al., 2007). Here, we ask whether these inhibitory surrounds might reflect a strategy that the brain has adapted to optimize the search for targets in natural scenes. To test this hypothesis, we sought to estimate the best linear template (behavioral receptive field), built from linear combinations of Gabor channels representing V1 simple cells in search for an additive Gaussian target embedded in natural images. Statistically nonstationary and non-Gaussian properties of natural scenes preclude calculation of the best linear template from analytic expressions and require an iterative optimization method such as a virtual evolution via a genetic algorithm. Evolved linear receptive fields built from linear combinations of Gabor functions include substantial inhibitory surround, larger than those found in humans performing target search in white noise. The inhibitory surrounds were robust to changes in the contrast of the signal, generalized to a larger calibrated natural image data set, and tasks in which the signal occluded other objects in the image. We show that channel nonlinearities can have strong effects on the observed linear behavioral receptive field but preserve the inhibitory surrounds. Together, the results suggest that the apparent suboptimality of inhibitory surrounds in human behavioral receptive fields when searching for a target in white noise might reflect a strategy to optimize detection of signals in natural scenes. Finally, we contend that optimized linear detection of spatially compact signals in natural images might be a new possible hypothesis, distinct from decorrelation of visual input and sparse representations (e.g., Graham et al., 2006), to explain the evolution of center–surround organization of receptive fields in early vision.


2001 ◽  
Vol 38-40 ◽  
pp. 279-284 ◽  
Author(s):  
Norbert Mayer ◽  
J.Michael Herrmann ◽  
Theo Geisel

2016 ◽  
Vol 115 (5) ◽  
pp. 2556-2576 ◽  
Author(s):  
Vargha Talebi ◽  
Curtis L. Baker

In the visual cortex, distinct types of neurons have been identified based on cellular morphology, response to injected current, or expression of specific markers, but neurophysiological studies have revealed visual receptive field (RF) properties that appear to be on a continuum, with only two generally recognized classes: simple and complex. Most previous studies have characterized visual responses of neurons using stereotyped stimuli such as bars, gratings, or white noise and simple system identification approaches (e.g., reverse correlation). Here we estimate visual RF models of cortical neurons using visually rich natural image stimuli and regularized regression system identification methods and characterize their spatial tuning, temporal dynamics, spatiotemporal behavior, and spiking properties. We quantitatively demonstrate the existence of three functionally distinct categories of simple cells, distinguished by their degree of orientation selectivity (isotropic or oriented) and the nature of their output nonlinearity (expansive or compressive). In addition, these three types have differing average values of several other properties. Cells with nonoriented RFs tend to have smaller RFs, shorter response durations, no direction selectivity, and high reliability. Orientation-selective neurons with an expansive output nonlinearity have Gabor-like RFs, lower spontaneous activity and responsivity, and spiking responses with higher sparseness. Oriented RFs with a compressive nonlinearity are spatially nondescript and tend to show longer response latency. Our findings indicate multiple physiologically defined types of RFs beyond the simple/complex dichotomy, suggesting that cortical neurons may have more specialized functional roles rather than lying on a multidimensional continuum.


2018 ◽  
Author(s):  
Takashi Yoshida ◽  
Kenichi Ohki

AbstractNatural scenes sparsely activate neurons in the primary visual cortex (V1). However, how sparsely active neurons robustly represent natural images and how the information is optimally decoded from the representation have not been revealed. We reconstructed natural images from V1 activity in anaesthetized and awake mice. A single natural image was linearly decodable from a surprisingly small number of highly responsive neurons, and an additional use of remaining neurons even degraded the decoding. This representation was achieved by diverse receptive fields (RFs) of the small number of highly responsive neurons. Furthermore, these neurons reliably represented the image across trials, regardless of trial-to-trial response variability. The reliable representation was supported by multiple neurons with overlapping RFs. Based on our results, the diverse, partially overlapping RFs ensure sparse and reliable representation. We propose a new representation scheme in which information is reliably represented while the representing neuronal patterns change across trials and that collecting only the activity of highly responsive neurons is an optimal decoding strategy for the downstream neurons


2019 ◽  
Author(s):  
Alessandro La Chioma ◽  
Tobias Bonhoeffer ◽  
Mark Hübener

SummaryBinocular disparity, the difference between left and right eye images, is a powerful cue for depth perception. Many neurons in the visual cortex of higher mammals are sensitive to binocular disparity, with distinct disparity tuning properties across primary and higher visual areas. Mouse primary visual cortex (V1) has been shown to contain disparity-tuned neurons, but it is unknown how these signals are processed beyond V1. We find that disparity signals are prominent in higher areas of mouse visual cortex. Preferred disparities markedly differ among visual areas, with area RL encoding visual stimuli very close to the mouse. Moreover, disparity preference is systematically related to visual field elevation, such that neurons with receptive fields in the lower visual field are overall tuned to near disparities, likely reflecting an adaptation to natural image statistics. Our results reveal ecologically relevant areal specializations for binocular disparity processing across mouse visual cortex.


2021 ◽  
Author(s):  
Linxing Preston Jiang ◽  
Dimitrios C. Gklezakos ◽  
Rajesh P. N. Rao

AbstractThe original predictive coding model of Rao & Ballard [1] focused on spatial prediction to explain spatial receptive fields and contextual effects in the visual cortex. Here, we introduce a new dynamic predictive coding model that achieves spatiotemporal prediction of complex natural image sequences using time-varying transition matrices. We overcome the limitations of static linear transition models (as in, e.g., Kalman filters) using a hypernetwork to adjust the transition matrix dynamically for every time step, allowing the model to predict using a time-varying mixture of possible transition dynamics. We developed a single level model with recurrent modulation of transition weights by a hypernetwork and a two-level hierarchical model with top-down modulation based on a hypernetwork. At each time step, the model predicts the next input and estimates a sparse neural code by minimizing prediction error. When exposed to natural movies, the model learned localized, oriented spatial filters as well as both separable and inseparable (direction-selective) space-time receptive fields at the first level, similar to those found in the primary visual cortex (V1). Longer timescale responses and stability at the second level also emerged naturally from minimizing prediction errors for the first level dynamics. Our results suggest that the multiscale temporal response properties of cortical neurons could be the result of the cortex learning a hierarchical generative model of the visual world with higher order areas predicting the transition dynamics of lower order areas.


Sign in / Sign up

Export Citation Format

Share Document