transition dynamics
Recently Published Documents


TOTAL DOCUMENTS

434
(FIVE YEARS 102)

H-INDEX

42
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stressenergy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r -4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stressenergy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r -4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stressenergy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r -4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stressenergy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r -4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stress-energy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r-4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stress-energy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r-4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stress-energy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r-4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


Author(s):  
Ying Hao ◽  
Saijun Zhang ◽  
Austin Conner ◽  
Na Youn Lee

The study investigated how pediatric speech-language pathologists (SLPs) applied telepractice to compensate for the loss of in-person services and the dynamics of telepractice use during the COVID-19 pandemic in a rural state. We conducted interviews with 10 SLPs and then a statewide survey in which 51 SLPs participated. The qualitative interviews revealed themes including changes in service environment due to the pandemic (e.g., transition to telepractice, losing clients), challenges in the transition to telepractice (e.g., limited training, difficulty engaging clients), worsening wellbeing of clinicians and clients, and SLPs’ perspectives and suggestions towards telepractice in the future. Survey results showed service disruptions and transition dynamics during the pandemic. SLPs’ weekly caseloads reduced from an average of 42.3 clients prior to the pandemic to 25.9 and 23.4 from March to May and from June to September 2020, respectively, and then recovered to 37.2 clients from October to December 2020. In contrast, the number of telepractice caseloads sharply increased from 0.2 clients per week prior to the pandemic to 14.8 from March to May 2020. The weekly telepractice caseloads then declined to 5.5 clients from June to September and 7.9 clients from October to December 2020. In the months right after the pandemic outbreak (i.e., March to May), client children struggled with treatment gains and behavioral wellbeing. However, their outcomes gradually improved by October to December and approached pre-pandemic levels. About one-third of the SLPs reported that they would be more likely or much more likely to use telepractice in the future regardless of the pandemic. However, only about a quarter perceived telepractice as comparable to in-person services. We concluded that the transition from in-person services to telepractice substantially mitigated service disruptions right after the pandemic outbreak and that telepractice’s substitute role evolved over time.


Sign in / Sign up

Export Citation Format

Share Document