scholarly journals E-quality Control in Dental Metal Additive Manufacturing Inspection Using 3D Scanning and 3D Measurement

Author(s):  
Liang Du ◽  
Yiwen Lai ◽  
Chunwang Luo ◽  
Yong Zhang ◽  
Jun Zheng ◽  
...  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhuo Wang ◽  
Chen Jiang ◽  
Pengwei Liu ◽  
Wenhua Yang ◽  
Ying Zhao ◽  
...  

AbstractUncertainty quantification (UQ) in metal additive manufacturing (AM) has attracted tremendous interest in order to dramatically improve product reliability. Model-based UQ, which relies on the validity of a computational model, has been widely explored as a potential substitute for the time-consuming and expensive UQ solely based on experiments. However, its adoption in the practical AM process requires overcoming two main challenges: (1) the inaccurate knowledge of uncertainty sources and (2) the intrinsic uncertainty associated with the computational model. Here, we propose a data-driven framework to tackle these two challenges by combining high throughput physical/surrogate model simulations and the AM-Bench experimental data from the National Institute of Standards and Technology (NIST). We first construct a surrogate model, based on high throughput physical simulations, for predicting the three-dimensional (3D) melt pool geometry and its uncertainty with respect to AM parameters and uncertainty sources. We then employ a sequential Bayesian calibration method to perform experimental parameter calibration and model correction to significantly improve the validity of the 3D melt pool surrogate model. The application of the calibrated melt pool model to UQ of the porosity level, an important quality factor, of AM parts, demonstrates its potential use in AM quality control. The proposed UQ framework can be generally applicable to different AM processes, representing a significant advance toward physics-based quality control of AM products.


2021 ◽  
pp. 250-265
Author(s):  
Daniel P. Dennies ◽  
S. Lampman

Abstract This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.


2021 ◽  
Vol 11 (4) ◽  
pp. 1966
Author(s):  
Jungeon Lee ◽  
Hyung Jun Park ◽  
Seunghak Chai ◽  
Gyu Ri Kim ◽  
Hwanwoong Yong ◽  
...  

Metal additive manufacturing (AM) has several similarities to conventional metal manufacturing, such as welding and cladding. During the manufacturing process, both metal AM and welding experience repeated partial melting and cooling, referred to as deposition. Owing to deposition, metal AM and welded products often share common product quality issues, such as layer misalignment, dimensional errors, and residual stress generation. This paper comprehensively reviews the similarities in quality monitoring methods between metal AM and conventional metal manufacturing. It was observed that a number of quality monitoring methods applied to metal AM and welding are interrelated; therefore, they can be used complementarily with each other.


2021 ◽  
Vol 2 ◽  
pp. 100032
Author(s):  
J.P.M. Pragana ◽  
R.F.V. Sampaio ◽  
I.M.F. Bragança ◽  
C.M.A. Silva ◽  
P.A.F. Martins

2021 ◽  
Vol 18 (3) ◽  
pp. 32-37
Author(s):  
Francesca Moglia ◽  
Antonio Raspa

Sign in / Sign up

Export Citation Format

Share Document