scholarly journals Biochemical Characterization of Cellulase From Bacillus subtilis Strain and its Effect on Digestibility and Structural Modifications of Lignocellulose Rich Biomass

Author(s):  
Waseem Ayoub Malik ◽  
Saleem Javed

Microbial cellulases have become the mainstream biocatalysts due to their complex nature and widespread industrial applications. The present study reports the partial purification and characterization of cellulase from Bacillus subtilis CD001 and its application in biomass saccharification. Out of four different substrates, carboxymethyl cellulose, when amended as fermentation substrate, induced the highest cellulase production from B. subtilis CD001. The optimum activity of CMCase, FPase, and amylase was 2.4 U/ml, 1.5 U/ml, and 1.45 U/ml, respectively. The enzyme was partially purified by (NH4)2SO4 precipitation and sequenced through LC-MS/MS. The cellulase was found to be approximately 55 kDa by SDS-PAGE and capable of hydrolyzing cellulose, as confirmed by zymogram analysis. The enzyme was assigned an accession number AOR98335.1 and displayed 46% sequence homology with 14 peptide-spectrum matches having 12 unique peptide sequences. Characterization of the enzyme revealed it to be an acidothermophilic cellulase, having an optimum activity at pH 5 and a temperature of 60°C. Kinetic analysis of partially purified enzyme showed the Km and Vmax values of 0.996 mM and 1.647 U/ml, respectively. The enzyme activity was accelerated by ZnSO4, MnSO4, and MgSO4, whereas inhibited significantly by EDTA and moderately by β-mercaptoethanol and urea. Further, characterization of the enzyme saccharified sugarcane bagasse, wheat straw, and filter paper by SEM, ATR-FTIR, and XRD revealed efficient hydrolysis and structural modifications of cellulosic materials, indicating the potential industrial application of the B. subtilis CD001 cellulase. The findings demonstrated the potential suitability of cellulase from B. subtilis CD001 for use in current mainstream biomass conversion into fuels and other industrial processes.

2014 ◽  
Vol 11 (2) ◽  
pp. 1056-1061
Author(s):  
Baghdad Science Journal

Three strain of Bacillus cereus were obtained from soil sours Laboratories of Biology Department/ College of Science/ University of Baghdad. The bacteria secreted extracellular xylanase in liquid cultur the test ability of xylanase production from these isolates was studied semi quantitative and quantitative screening appeared that Bacillus cereus X3 was the highest xylanase producer. The enzyme was partial purification 191 fold from cultur by reached step by 4 U/mg proteins by ammonium sulfat precipitation 80%, Ion exchang DEAE-cellulos chromatography Characterization study of the partial purifation enzyme revealed that the enzyme had a optimum activity pH8 and activity was stable in the pH rang (8-10) for 30min. maximal activity was attained at 50C


2017 ◽  
Vol 74 (12) ◽  
pp. 2319-2332 ◽  
Author(s):  
Meriem El Ghachi ◽  
Nicole Howe ◽  
Rodolphe Auger ◽  
Alexandre Lambion ◽  
Annick Guiseppi ◽  
...  

2018 ◽  
Vol 204 (1) ◽  
pp. 1-8 ◽  
Author(s):  
N. Zeytuni ◽  
K.A. Flanagan ◽  
L.J. Worrall ◽  
S.C. Massoni ◽  
A.H. Camp ◽  
...  

2010 ◽  
Vol 192 (11) ◽  
pp. 2900-2907 ◽  
Author(s):  
Maarten Groeneveld ◽  
Ruud G. J. Detert Oude Weme ◽  
Ria H. Duurkens ◽  
Dirk Jan Slotboom

ABSTRACT Bacterial secondary transporters of the DctA family mediate ion-coupled uptake of C4-dicarboxylates. Here, we have expressed the DctA homologue from Bacillus subtilis in the Gram-positive bacterium Lactococcus lactis. Transport of dicarboxylates in vitro in isolated membrane vesicles was assayed. We determined the substrate specificity, the type of cotransported ions, the electrogenic nature of transport, and the pH and temperature dependence patterns. DctA was found to catalyze proton-coupled symport of the four C4-dicarboxylates from the Krebs cycle (succinate, fumurate, malate, and oxaloacetate) but not of other mono- and dicarboxylates. Because (i) succinate-proton symport was electrogenic (stimulated by an internal negative membrane potential) and (ii) the divalent anionic form of succinate was recognized by DctA, at least three protons must be cotransported with succinate. The results were interpreted in the light of the crystal structure of the homologous aspartate transporter GltPh from Pyrococcus horikoshii.


Sign in / Sign up

Export Citation Format

Share Document