scholarly journals Measuring SO2 Emission Rates at Kīlauea Volcano, Hawaii, Using an Array of Upward-Looking UV Spectrometers, 2014–2017

2018 ◽  
Vol 6 ◽  
Author(s):  
Tamar Elias ◽  
Christoph Kern ◽  
Keith A. Horton ◽  
Andrew J. Sutton ◽  
Harold Garbeil
2014 ◽  
Vol 14 (16) ◽  
pp. 8309-8322 ◽  
Author(s):  
S. Beirle ◽  
C. Hörmann ◽  
M. Penning de Vries ◽  
S. Dörner ◽  
C. Kern ◽  
...  

Abstract. We present an analysis of SO2 column densities derived from GOME-2 satellite measurements for the Kīlauea volcano (Hawai`i) for 2007–2012. During a period of enhanced degassing activity in March–November 2008, monthly mean SO2 emission rates and effective SO2 lifetimes are determined simultaneously from the observed downwind plume evolution and meteorological wind fields, without further model input. Kīlauea is particularly suited for quantitative investigations from satellite observations owing to the absence of interfering sources, the clearly defined downwind plumes caused by steady trade winds, and generally low cloud fractions. For March–November 2008, the effective SO2 lifetime is 1–2 days, and Kīlauea SO2 emission rates are 9–21 kt day−1, which is about 3 times higher than initially reported from ground-based monitoring systems.


2013 ◽  
Vol 13 (11) ◽  
pp. 28695-28727 ◽  
Author(s):  
S. Beirle ◽  
C. Hörmann ◽  
M. Penning de Vries ◽  
S. Dörner ◽  
C. Kern ◽  
...  

Abstract. We present an analysis of SO2 column densities derived from GOME-2 satellite measurements for the Kīlauea volcano (Hawai'i) for 2007–2012. During a period of enhanced degassing activity in March–November 2008, monthly mean SO2 emission rates and effective SO2 lifetimes are determined simultaneously from the observed downwind plume evolution and ECMWF wind fields, without further model input. Kīlauea is particularly suited for quantitative investigations from satellite observations owing to the absence of interfering sources, the clearly defined downwind plumes caused by steady trade winds, and generally low cloud fractions. For March–November 2008, the effective SO2 lifetime is 1–2 days, and Kīlauea SO2 emission rates are 9–21 kt day−1, which is about 3 times higher than initially reported from ground-based monitoring systems.


2021 ◽  
Author(s):  
Adrian Jost ◽  
Steffen Beirle ◽  
Steffen Dörner ◽  
Thomas Wagner

<div> <div> <div> <div> <p>With a nearly continuously effusive eruption since 1983, the Kilauea volcano (Hawaii, USA) is one of the most active volcanoes in the world. At the beginning of May 2018, a sequence of eruptions on the Lower East Rift Zone (LERZ) caused an enhanced outbreak of volcanic gases and aerosols, releasing them into the troposphere. Since these gases and particles affect climate, environment, traffic, and health on regional to global scales, a continuos monitoring of the emission rates is essential.</p> <p>As satellites provide the opportunity to observe and quantify the emissions remotely from space, their contribution to the monitoring of volcanoes is significant. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite was successfully launched by the end of 2017 and provides measurements with unprecedented level of details with a resolution of 3.5 x 7 km2. This also allows for an accurate retrieval of trace gas species such as volcanic SO2.</p> <p>Here, it will be shown that the location and strength of SO2 emissions from Kilauea can be determined by the divergence of the temporal mean SO2 flux. This approach, which is based on the continuity equation, has been demonstrated to work for NOX emissions of individual power plants (Beirle et al., Sci. Adv., 2019).</p> <p>The present state of our work indicates that emission maps of SO2 can be derived by the combination of satellite measurements and wind fields on high spatial resolution. As the divergence is highly sensitive on point sources like the erupting fissures in the 2018 Kilauea eruption, they can be localized very precisely. The obtained emission rates are slightly lower than the ones reported from ground-based measurements in other studies like the one from Kern et al. (Bull. Volcanol., 2020). The effects of suboptimal conditions like high cloud fractions on the method probably affect the derived emission rates and have to be further analyzed.</p> </div> </div> </div> </div>


2020 ◽  
Author(s):  
Stephane Boubanga Tombet ◽  
Sylvain Gatti ◽  
Andreas Eisele ◽  
Vince Morton

<p>The formation of Earth atmosphere and oceans have been primarily deeply influenced by volcanic emissions. In addition, the planet radiative balance and stratospheric chemistry can be affected by materials injected into the atmosphere by large explosive eruptions. Volcanic emission often contain water vapor (H2O), carbon dioxide (CO2), and depending on the type of volcano they may contain varying proportions of toxic/corrosive gases such as Sulphur dioxide (SO2), hydrogen fluoride (HF) and silicon tetrafluoride (SiF4). CO2 is generally the most abundant gas with the lowest solubility among the volatile compounds of magmatic liquids and the less susceptible than most other magmatic substances such as SO2 and HF. Thanks to those properties, the volcanic CO2 emission rates could play an important role for assessing volcanic hazards and for constraining the role of magma degassing in the biogeochemical cycle of carbon. However, measurements of CO2 emission rates from volcanoes remain challenging, mainly due to the difficulty of measuring volcanic CO2 against the high level of CO2 in the atmosphere. Thermal Infrared (TIR) imaging is now a well-established tool for the monitoring of volcanic activity since many volcanic gases such as CO2 and SO2 are infrared-active molecules. High speed broadband cameras give valuable insight into the physical processes taking place during volcanic activity, while spectrally resolved cameras allow to assess the composition of volcanic gases.</p><p>In this work we conducted TIR imaging and quantification of CO2 passive degassing at Sulphur Banks from Kilauea volcano using Telops Midwave Infrared time-resolved multispectral imager. The imager allows synchronized acquisition on eight channels, at a high frame rate, using a motorized filter wheel. Using appropriate spectral filters measurements allows estimation of the gas emissivity parameters in addition to providing selectivity regarding the chemical nature of the emitted gases. Our results show CO2 measurements within the volcano’s plume from its distinct spectral feature. Quantitative chemical maps with local CO2 concentrations of few hundreds of ppm was derived and mass flow rates of few g/s were also estimated. The results show that thermal infrared multispectral imaging provides unique insights for volcanology studies.</p>


Sign in / Sign up

Export Citation Format

Share Document