scholarly journals Learning to Overcome a Lack of Evolutionary History: Can an Endangered Fish Learn to Fear an Introduced Predator?

Author(s):  
Sarah Farnsley ◽  
Bernard Kuhajda ◽  
Anna George ◽  
Hope Klug
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11917
Author(s):  
Violeta Cárcamo-Tejer ◽  
Irma Vila ◽  
Francisco Llanquín-Rosas ◽  
Alberto Sáez-Arteaga ◽  
Claudia Guerrero-Jiménez

From the early Miocene, the uplift of the Andes Mountains, intense volcanic activity and the occurrence of successive periods of dryness and humidity would have differentially influenced the modification of Altiplano watersheds, and consequently the evolutionary history of the taxa that live there. We analyzed Orestias populations from the Caquena and Lauca Altiplanic sub-basins of northern Chile to determine their genetic differentiation and relationship to their geographical distribution using mitochondrial (D-loop) and nuclear (microsatellite) molecular markers and to reconstruct its biogeographic history on these sub-basins. The results allowed reconstructing and reevaluating the evolutionary history of the genus in the area; genic diversity and differentiation together with different founding genetic groups suggest that Orestias have been spread homogeneously in the study area and would have experienced local disturbances that promoted isolation and diversification in restricted zones of their distribution.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2019 ◽  
Author(s):  
Marko J. Spasojevic ◽  
Sören Weber1

Stable carbon (C) and nitrogen (N) isotopes in plants are important indicators of plant water use efficiency and N acquisition strategies. While often regarded as being under environmental control, there is growing evidence that evolutionary history may also shape variation in stable isotope ratios (δ13C and δ15N) among plant species. Here we examined patterns of foliar δ13C and δ15N in alpine tundra for 59 species in 20 plant families. To assess the importance of environmental controls and evolutionary history, we examined if average δ13C and δ15N predictably differed among habitat types, if individual species exhibited intraspecific trait variation (ITV) in δ13C and δ15N, and if there were a significant phylogenetic signal in δ13C and δ15N. We found that variation among habitat types in both δ13C and δ15N mirrored well-known patterns of water and nitrogen limitation. Conversely, we also found that 40% of species exhibited no ITV in δ13C and 35% of species exhibited no ITV in δ15N, suggesting that some species are under stronger evolutionary control. However, we only found a modest signal of phylogenetic conservatism in δ13C and no phylogenetic signal in δ15N suggesting that shared ancestry is a weaker driver of tundra wide variation in stable isotopes. Together, our results suggest that both evolutionary history and local environmental conditions play a role in determining variation in δ13C and δ15N and that considering both factors can help with interpreting isotope patterns in nature and with predicting which species may be able to respond to rapidly changing environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document