scholarly journals Enhanced Enzymatic Hydrolysis of Cellulose From Substrate and Indole-3-Acetic Acid Content—During the Fruiting Body Differentiation Stage by Sodium Acetate Addition

2021 ◽  
Vol 2 ◽  
Author(s):  
Li-juan Hou ◽  
Zheng-peng Li ◽  
Chang-tian Li ◽  
Jin-sheng Lin ◽  
Lin Ma ◽  
...  

Volvariella volvacea, with high commercial, nutritional and medicinal value, is widely cultivated in tropical and subtropical regions. The effects of supplementation on mushroom yield has been studied. We showed that the optimal application of sodium acetate (NaAc) was spray application of a 0.08% concentration during the substrate mixing stage which could increase yields by up to 89.16% and enhance the enzymatic hydrolysis of cellulose and hemicellulose from the substrate. For most enzymes tested maximum activity occurred during the fruiting body growth and development stage, which led to degradation of the substrate, increasing the available nutrients for mycelial propagation and fruiting body growth and development. Meanwhile, NaAc also significantly increased the indole-3-acetic acid (IAA) content in the early fruiting body development stage of V. volvacea, It was observed that IAA promotes not only plant primordium differentiation; but also the primordium differentiation of edible fungi. Furthermore, treatments with three acetate salts had an increase of yield by 30.22% on average. The mechanisms by which NaAc application may improve the yield of V. volvacea are discussed.

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

2015 ◽  
Vol 51 (52) ◽  
pp. 10502-10505 ◽  
Author(s):  
Aiping Chang ◽  
Qingshi Wu ◽  
Wenting Xu ◽  
Jianda Xie ◽  
Weitai Wu

The physical trapping of cellulose in microgels leads to a low-ordered cellulose, favoring enzymatic hydrolysis of cellulose to generate glucose.


1977 ◽  
Vol 23 (2) ◽  
pp. 139-147 ◽  
Author(s):  
D. Sternberg ◽  
P. Vuayakumar ◽  
E. T. Reese

The enzymatic conversion of cellulose is catalyzed by a multiple enzyme system. The Trichoderma enzyme system has been studied extensively and has insufficient β-glucosidase (EC 3.2.1.21) activity for the practical saccharification of cellulose. The black aspergilli (A. niger and A. phoenicis) were superior producers of β-glucosidase and a method for production of this enzyme in liquid culture is presented. When Trichoderma cellulase preparations are supplemented with β-glucosidase from Aspergillus during practical saccharifications, glucose is the predominant product and the rate of saccharification is significantly increased. The stimulatory effect of β-glucosidase appears to be due to the removal of inhibitory levels of cellobiose.


2020 ◽  
Author(s):  
Ioanna Stamogiannou ◽  
John Van Camp ◽  
Guy Smagghe ◽  
Davy Van de Walle ◽  
Koen Dewettinck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document