predominant product
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jinsheng Lin ◽  
Qiang Zhou ◽  
Ru Jia ◽  
Wentao Liu ◽  
Huacui Hou ◽  
...  

In October 2021, an India-based pharmaceutical company withdrew a number of batches of irbesartan and irbesartan hydrochlorothiazide finished products from the US market, due to the presence of unacceptable level of the “probably carcinogenic” nitrosamine “N-nitrosoirbesartan”. Nevertheless, there is no revealing of the exact structure of this so called “N-nitrosoirbesartan”. In the current study, we performed a set of 10 reactions of irbesartan with nitrous acid under various conditions and found no trace of this “N-nitrosoirbesartan” by a sensitive and accurate LC-MS method with limit of detection (LOD) of 30 ppb. With the use of LC-PDA/UV-high resolution MSn as well as 1D/2D NMR, the reaction products formed are found to be the two isomeric oxime derivatives of irbesartan, with the Z-isomer as the predominant product. Furthermore, no trace of this “N-nitrosoirbesartan” can be detected in representative commercial batches of irbesartan. Despite of the fact that in silico evaluation suggests that the two irbesartan oximes may be controlled as regular impurities, analysis of representative irbesartan commercial batches by the LC-MS method indicates that the oximes are not detected (LOD: 30 ppb).


2021 ◽  
Author(s):  
Hao Wang ◽  
Rong Yu ◽  
Jennifer Webb ◽  
Peter Dollar ◽  
David L Freedman

Chloroform (CF) and dichloromethane (DCM) are among the more commonly identified chlorinated aliphatic compounds found in contaminated soil and groundwater. Complete dechlorination of CF has been reported under anaerobic conditions by microbes that respire CF to DCM and others that biodegrade DCM. The objectives of this study were to ascertain if a commercially available bioaugmentation enrichment culture (KB-1® Plus) uses an oxidative or fermentative pathway for biodegradation of DCM; and to determine if the products from DCM biodegradation can support organohalide respiration of CF to DCM in the absence of an exogenous electron donor. In various treatments with the KB-1® Plus culture to which 14C-CF was added, the predominant product was 14CO2, indicating that oxidation is the predominant  pathway for DCM. Recovery of 14C-DCM when biodegradation was still in progress confirmed that CF first undergoes reductive dechlorination to DCM. 14C-labeled organic acids, including acetate and propionate, were also recovered, suggesting that synthesis of organic acids provides a sink for the electron equivalents from oxidation of DCM. When the culture was washed to remove organic acids from prior additions of exogenous electron donor and only CF and DCM were added, the culture completely dechlorinated CF. The total amount of DCM added was not sufficient to provide the electron equivalents needed to reduce CF to DCM. Thus, the additional reducing power came via the DCM generated from CF reduction. Nevertheless, the rate of CF consumption was considerably slower in comparison to treatments that received an exogenous electron donor.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 734-743
Author(s):  
Christopher S. Frampton ◽  
James H. Gall ◽  
David D. MacNicol

Rifamycins are an extremely important class of antibacterial agents whose action results from the inhibition of DNA-dependent RNA synthesis. A special arrangement of unsubstituted hydroxy groups at C21 and C23, with oxygen atoms at C1 and C8 is essential for activity. Moreover, it is known that the antibacterial action of rifamycin is lost if either of the two former hydroxy groups undergo substitution and are no longer free to act in enzyme inhibition. In the present work, we describe the successful use of an Alder-Ene reaction between Rifamycin O, 1 and diethyl azodicarboxylate, yielding 2, which was a targeted introduction of a relatively bulky group close to C21 to protect its hydroxy group. Many related azo diesters were found to react analogously, giving one predominant product in each case. To determine unambiguously the stereochemistry of the Alder-Ene addition process, a crystalline zwitterionic derivative 3 of the diethyl azodicarboxylate adduct 2 was prepared by reductive amination at its spirocyclic centre C4. The adduct, as a mono chloroform solvate, crystallized in the non-centrosymmetric Sohnke orthorhombic space group, P212121. The unique conformation and absolute stereochemistry of 3 revealed through X-ray crystal structure analysis is described.


Author(s):  
Mina Attarbashi ◽  
Shiraz Zabarjad ◽  
Marjaneh Samadizadeh

Herein, the chemoselectivity of the multicomponent domino Knoevenagel/Diels-Alder reaction is investigated in terms of theoretical calculations. Structures of reagents, transition states, intermediates and products are optimized at the M062X/6-31+G(d,p) level of theory. The reaction mechanism involves processes of bond rotation, isomerization, asymmetric cycloaddition, acid-base and nucleophile-electrophile competitions, which are studied to deliver a clear information of the mechanism in terms of chemoselectivity considerations. Accordingly, the chemoselectivity of the reaction is controlled by the releasing acetone during the decomposition of Meldrum acid in the presence of methanol and L-proline (DG# = 61.45 kcal mol-1). Comparing calculated results (gas and solvent phase) with the experimental ones showed that utilizing these reagents are the kinetical favorite path for the chemoselective multicomponent cascade Knoevenagel/Diels-Alder reaction to produce the predominant product (>95 %). The results suggest that the creation of cis-spiro cyclohexanone is the predominant chemoselective product under kinetic control of the desired enone.


2020 ◽  
Vol 477 (5) ◽  
pp. 1009-1019 ◽  
Author(s):  
Boris Krichel ◽  
Sven Falke ◽  
Rolf Hilgenfeld ◽  
Lars Redecke ◽  
Charlotte Uetrecht

Severe acute respiratory syndrome coronavirus is the causative agent of a respiratory disease with a high case fatality rate. During the formation of the coronaviral replication/transcription complex, essential steps include processing of the conserved polyprotein nsp7–10 region by the main protease Mpro and subsequent complex formation of the released nsp's. Here, we analyzed processing of the coronavirus nsp7–10 region using native mass spectrometry showing consumption of substrate, rise and fall of intermediate products and complexation. Importantly, there is a clear order of cleavage efficiencies, which is influenced by the polyprotein tertiary structure. Furthermore, the predominant product is an nsp7+8(2 : 2) hetero-tetramer with nsp8 scaffold. In conclusion, native MS, opposed to other methods, can expose the processing dynamics of viral polyproteins and the landscape of protein interactions in one set of experiments. Thereby, new insights into protein interactions, essential for generation of viral progeny, were provided, with relevance for development of antivirals.


2019 ◽  
Author(s):  
Boris Krichel ◽  
Sven Falke ◽  
Rolf Hilgenfeld ◽  
Lars Redecke ◽  
Charlotte Uetrecht

1.1.AbstractSevere acute respiratory syndrome coronavirus (SARS-CoV) is the causative agent of a respiratory disease with a high case fatality rate. During the formation of the coronaviral replication/transcription complex (RTC), essential steps include processing of the conserved polyprotein nsp7-10 region by the main protease Mpro and subsequent complex formation of the released nsp’s. Here, we analyzed processing of the coronavirus nsp7-10 region using native mass spectrometry showing consumption of substrate, rise and fall of intermediate products and complexation. Importantly, there is a clear order of cleavage efficiencies, which is influenced by the polyprotein tertiary structure. Furthermore, the predominant product is an nsp7+8(2:2) hetero-tetramer with nsp8 scaffold. In conclusion, native MS, opposed to other methods, can expose the processing dynamics of viral polyproteins and the landscape of protein interactions in one set of experiments. Thereby, new insights into protein interactions, essential for generation of viral progeny, were provided, with relevance for development of antivirals.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jolanta Lodowska ◽  
Daniel Wolny ◽  
Sławomir Kurkiewicz ◽  
Ludmiła Węglarz

Background. Bone grafts are used in the treatment of nonunion of fractures, bone tumors and in arthroplasty. Tissues preserved by lyophilization or deep freezing are used as implants nowadays. Lyophilized grafts are utilized in the therapy of birth defects and bone benign tumors, while deep-frozen ones are applied in orthopedics. The aim of the study was to compare the pyrolytic pattern, as an indirect means of the analysis of organic composition of deep-frozen and lyophilized compact part of the human bone.Methods. Samples of preserved bone tissue were subjected to thermolysis and tetrahydroammonium-hydroxide- (TMAH-) associated thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS).Results. Derivatives of benzene, pyridine, pyrrole, phenol, sulfur compounds, nitriles, saturated and unsaturated aliphatic hydrocarbons, and fatty acids (C12–C20) were identified in the pyrolytic pattern. The pyrolyzates were the most abundant in derivatives of pyrrole and nitriles originated from proteins. The predominant product in pyrolytic pattern of the investigated bone was pyrrolo[1,2-α]piperazine-3,6-dione derived from collagen. The content of this compound significantly differentiated the lyophilized graft from the deep-frozen one. Oleic and palmitic acid were predominant among fatty acids of the investigated samples. The deep-frozen implants were characterized by higher percentage of long-chain fatty acids than lyophilized grafts.


2010 ◽  
Vol 192 (7) ◽  
pp. 1865-1874 ◽  
Author(s):  
Steve Petrovski ◽  
Vilma A. Stanisich

ABSTRACT In this study, we report on the transposition behavior of the mercury(II) resistance transposons Tn502 and Tn512, which are members of the Tn5053 family. These transposons exhibit targeted and oriented insertion in the par region of plasmid RP1, since par-encoded components, namely, the ParA resolvase and its cognate res region, are essential for such transposition. Tn502 and, under some circumstances, Tn512 can transpose when par is absent, providing evidence for an alternative, par-independent pathway of transposition. We show that the alternative pathway proceeds by a two-step replicative process involving random target selection and orientation of insertion, leading to the formation of cointegrates as the predominant product of the first stage of transposition. Cointegrates remain unresolved because the transposon-encoded (TniR) recombination system is relatively inefficient, as is the host-encoded (RecA) system. In the presence of the res-ParA recombination system, TniR-mediated (and RecA-mediated) cointegrate resolution is highly efficient, enabling resolution both of cointegrates involving functional transposons (Tn502 and Tn512) and of defective elements (In0 and In2). These findings implicate the target-encoded accessory functions in the second stage of transposition as well as in the first. We also show that the par-independent pathway enables the formation of deletions in the target molecule.


2007 ◽  
Vol 73 (20) ◽  
pp. 6526-6533 ◽  
Author(s):  
Alvaro Belenguer ◽  
Sylvia H. Duncan ◽  
Grietje Holtrop ◽  
Susan E. Anderson ◽  
Gerald E. Lobley ◽  
...  

ABSTRACT The human intestine harbors both lactate-producing and lactate-utilizing bacteria. Lactate is normally present at <3 mmol liter−1 in stool samples from healthy adults, but concentrations up to 100 mmol liter−1 have been reported in gut disorders such as ulcerative colitis. The effect of different initial pH values (5.2, 5.9, and 6.4) upon lactate metabolism was studied with fecal inocula from healthy volunteers, in incubations performed with the addition of dl-lactate, a mixture of polysaccharides (mainly starch), or both. Propionate and butyrate formation occurred at pH 6.4; both were curtailed at pH 5.2, while propionate but not butyrate formation was inhibited at pH 5.9. With the polysaccharide mix, lactate accumulation occurred only at pH 5.2, but lactate production, estimated using l-[U-13C]lactate, occurred at all three pH values. Lactate was completely utilized within 24 h at pH 5.9 and 6.4 but not at pH 5.2. At pH 5.9, more butyrate than propionate was formed from l-[U-13C]lactate in the presence of polysaccharides, but propionate, formed mostly by the acrylate pathway, was the predominant product with lactate alone. Fluorescent in situ hybridization demonstrated that populations of Bifidobacterium spp., major lactate producers, increased approximately 10-fold in incubations with polysaccharides. Populations of Eubacterium hallii, a lactate-utilizing butyrate-producing bacterium, increased 100-fold at pH 5.9 and 6.4. These experiments suggest that lactate is rapidly converted to acetate, butyrate, and propionate by the human intestinal microbiota at pH values as low as 5.9, but at pH 5.2 reduced utilization occurs while production is maintained, resulting in lactate accumulation.


2002 ◽  
Vol 184 (19) ◽  
pp. 5402-5409 ◽  
Author(s):  
Anke Skiba ◽  
Volker Hecht ◽  
Dietmar Helmut Pieper

ABSTRACT Muconate cycloisomerases are known to catalyze the reversible conversion of 2-chloro-cis,cis-muconate by 1,4- and 3,6-cycloisomerization into (4S)-(+)-2-chloro- and (4R/5S)-(+)-5-chloromuconolactone. 2-Chloromuconolactone is transformed by muconolactone isomerase with concomitant dechlorination and decarboxylation into the antibiotic protoanemonin. The low k cat for this compound compared to that for 5-chloromuconolactone suggests that protoanemonin formation is of minor importance. However, since 2-chloromuconolactone is the initially predominant product of 2-chloromuconate cycloisomerization, significant amounts of protoanemonin were formed in reaction mixtures containing large amounts of muconolactone isomerase and small amounts of muconate cycloisomerase. Such enzyme ratios resemble those observed in cell extracts of benzoate-grown cells of Ralstonia eutropha JMP134. In contrast, cis-dienelactone was the predominant product formed by enzyme preparations, in which muconolactone isomerase was in vitro rate limiting. In reaction mixtures containing chloromuconate cycloisomerase and muconolactone isomerase, only minute amounts of protoanemonin were detected, indicating that only small amounts of 2-chloromuconolactone were formed by cycloisomerization and that chloromuconate cycloisomerase actually preferentially catalyzes a 3,6-cycloisomerization.


Sign in / Sign up

Export Citation Format

Share Document