scholarly journals EASINESS: E. coli Assisted Speedy affINity-maturation Evolution SyStem

2021 ◽  
Vol 12 ◽  
Author(s):  
Hai-nan Zhang ◽  
Jun-biao Xue ◽  
Aru Ze-ling Wang ◽  
He-wei Jiang ◽  
Siva Bhararth Merugu ◽  
...  

Antibodies are one of the most important groups of biomolecules for both clinical and basic research and have been developed as potential therapeutics. Affinity is the key feature for biological activity and clinical efficacy of an antibody, especially of therapeutic antibodies, and thus antibody affinity improvement is indispensable and still remains challenging. To address this issue, we developed the E. coliAssisted Speed affINity-maturation Evolution SyStem (EASINESS) for continuous directed evolution of Ag–Ab interactions. Two key components of EASINESS include a mutation system modified from error-prone DNA polymerase I (Pol I) that selectively mutates ColE1 plasmids in E. coli and a protein–protein interaction selection system from mDHFR split fragments. We designed a GCN4 variant which barely forms a homodimer, and during a single round of evolution, we reversed the homodimer formation activity from the GCN4 variant to verify the feasibility of EASINESS. We then selected a potential therapeutic antibody 18A4Hu and improved the affinity of the antibody (18A4Hu) to its target (ARG2) 12-fold in 7 days while requiring very limited hands-on time. Remarkably, these variants of 18A4Hu revealed a significant improved ability to inhibit melanoma pulmonary metastasis in a mouse model. These results indicate EASINESS could be as an attractive choice for antibody affinity maturation.

1992 ◽  
Vol 3 (4) ◽  
pp. 223-241 ◽  
Author(s):  
B. Lindborg

Hypothetical three-dimensional models for the entire polymerase domain of HIV-1 reverse transcriptase (HIV RT) and conserved regions of HSV-1 DNA polymerase (HSV pol) were created, primarily from literature data on mutations and principles of protein structure, and compared with those of E. coli DNA polymerase I (E. coli pol I). The corresponding parts, performing similar functions, were found to be analogous, not homologous, in structure with different β topologies and sequential arrangement. The polymerase domain of HSV pol is shown to form an anti-parallel β-sheet with α-helices, but with a topology different from that of the Klenow fragment of E. coli pol I. The main part of the polymerase domain of HIV RT is made up of a basically parallel β-sheet and α-helices with a topology similar to the nucleotide-binding p21 ras proteins. The putative functions of some conserved or invariant amino acids in the three polymerase families are discussed.


Biochemistry ◽  
1984 ◽  
Vol 23 (9) ◽  
pp. 2073-2078 ◽  
Author(s):  
Anup K. Hazra ◽  
Sevilla Detera-Wadleigh ◽  
Samuel H. Wilson

Genetics ◽  
1990 ◽  
Vol 124 (2) ◽  
pp. 213-220 ◽  
Author(s):  
L J Reha-Krantz

Abstract Intragenic complementation was detected within the bacteriophage T4 DNA polymerase gene. Complementation was observed between specific amino (N)-terminal, temperature-sensitive (ts) mutator mutants and more carboxy (C)-terminal mutants lacking DNA polymerase polymerizing functions. Protein sequences surrounding N-terminal mutation sites are similar to sequences found in Escherichia coli ribonuclease H (RNase H) and in the 5'----3' exonuclease domain of E. coli DNA polymerase I. These observations suggest that T4 DNA polymerase, like E. coli DNA polymerase I, contains a discrete N-terminal domain.


1998 ◽  
Vol 278 (1) ◽  
pp. 147-165 ◽  
Author(s):  
Mekbib Astatke ◽  
Nigel D.F Grindley ◽  
Catherine M Joyce

2007 ◽  
Vol 190 (2) ◽  
pp. 755-758 ◽  
Author(s):  
Tzu-Wen Huang ◽  
Carton W. Chen

ABSTRACT Both polA (encoding DNA polymerase I; Pol I) and a paralog were deleted from Streptomyces strains. Despite the UV sensitivity and slow growth caused by the ΔpolA mutation, the double mutant was viable. Thus, in contrast to a previous postulate, Pol I and its paralog are not essential for replication of Streptomyces chromosomes.


1977 ◽  
Vol 78 (1) ◽  
pp. 170-176 ◽  
Author(s):  
Vito D'Aurora ◽  
Andrew M. Stern ◽  
David S. Sigman

1978 ◽  
Vol 32 (1) ◽  
pp. 25-35 ◽  
Author(s):  
D. J. Tweats ◽  
J. T. Smith

SUMMARYInitial experiments demonstrated that the plasmid R6K cannot be transferred to or maintained readily in theE. coliDNA polymerase I deficient strain JG138polA1. Results withE. coliMM386polA12(R6K), which has a temperature sensitive polymerase I enzyme, showed cell division becomes abnormal when the polymerase I enzyme of the host bacteria is inactivated at the restrictive temperature. Under conditions of polymerase I deficiency, R6K replication, as measured by monitoring R-factor-mediated β-lactamase activity, also becomes abnormal with the loss of multiple R6K copies per cell and the apparent maintenance of a single R-factor copy per cell.


Sign in / Sign up

Export Citation Format

Share Document