basic research
Recently Published Documents





2022 ◽  
Vol 11 (1) ◽  
Yingying Chen ◽  
Hui Liu ◽  
Lijie Zeng ◽  
Liyan Li ◽  
Dan Lu ◽  

AbstractParoxysmal nocturnal hemoglobinuria is a clonal disease caused by PIG-A mutation of hematopoietic stem cells. At present, there is no suitable PNH animal model for basic research, therefore, it is urgent to establish a stable animal model. We constructed a Pig-a conditional knock-out mice model by ES targeting technique and Vav-iCre. The expressions of GPI and GPI-AP were almost completely absent in CKO homozygote mice, and the proportion of the deficiency remained stable from birth. In CKO heterozygote mice, the proportion of the deficiency of GPI and GPI-AP was partially absent and decreased gradually from birth until it reached a stable level at 3 months after birth and remained there for life. Compared with normal C57BL/6N mice and Flox mice, pancytopenia was found in CKO homozygous mice, and leukopenia and anemia were found in CKO heterozygotes mice. Meanwhile, in CKO mice, the serum LDH, TBIL, IBIL, complement C5b-9 levels were increased, and the concentration of plasma FHb was increased. Hemosiderin granulosa cells can be seen more easily in the spleens of CKO mice. What’s more, CKO mice had stable transcription characteristics. In conclusion, our mouse model has stable GPI-deficient and mild hemolysis, which may be an ideal in vivo experimental model for PNH.

Chenhui Cai ◽  
Wenhui Hu ◽  
Tongwei Chu

There are multiple diseases or conditions such as hereditary hemochromatosis, hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can cause iron overload in the human body. These diseases or conditions are frequently associated with osteoarthritic phenotypes, such as progressive cartilage degradation, alterations in the microarchitecture and biomechanics of the subchondral bone, persistent joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest that the conditions of pathological iron overload are associated with these osteoarthritic phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron overload-related diseases and conditions. This review aims to summarize the findings and observations made in the field of iron overload-related OA while conducting clinical and basic research works. OA is a whole-joint disease that affects the articular cartilage lining surfaces of bones, subchondral bones, and synovial tissues in the joint cavity. Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the disease. In this review, we will elucidate the cellular and molecular mechanisms associated with iron overload and the negative influence that iron overload has on joint homeostasis. The promising value of interrupting the pathologic effects of iron overload is also well discussed for the development of improved therapeutics that can be used in the field of OA.

2022 ◽  
Vol 12 ◽  
Saurabh Pandey ◽  
Amir Bahram Moradi ◽  
Oleksandr Dovzhenko ◽  
Alisher Touraev ◽  
Klaus Palme ◽  

Alternation of generations between a sporophytic and gametophytic developmental stage is a feature common to all land plants. This review will discuss the evolutionary origins of these two developmental programs from unicellular eukaryotic progenitors establishing the ability to switch between haploid and diploid states. We will compare the various genetic factors that regulate this switch and highlight the mechanisms which are involved in maintaining the separation of sporophytic and gametophytic developmental programs. While haploid and diploid stages were morphologically similar at early evolutionary stages, largely different gametophyte and sporophyte developments prevail in land plants and finally allowed the development of pollen as the male gametes with specialized structures providing desiccation tolerance and allowing long-distance dispersal. Moreover, plant gametes can be reprogrammed to execute the sporophytic development prior to the formation of the diploid stage achieved with the fusion of gametes and thus initially maintain the haploid stage. Upon diploidization, doubled haploids can be generated which accelerate modern plant breeding as homozygous plants are obtained within one generation. Thus, knowledge of the major signaling pathways governing this dual ontogeny in land plants is not only required for basic research but also for biotechnological applications to develop novel breeding methods accelerating trait development.

2022 ◽  
Vol 11 ◽  
Jianzheng Wang ◽  
Hongle Li ◽  
Hui Wang ◽  
Qingli Li ◽  
Xuanye Bai ◽  

Desmoid tumor is a rare disease, which is histologically characterized by local invasion, monoclonality, and fibroblast proliferation; and clinically characterized by a variable and often unpredictable course. The treatment of desmoid tumor is mainly surgical resection, but the recurrence rate is high. In recent years, a variety of treatment methods, including endocrine therapy, surgery, radiotherapy, chemotherapy, non-steroidal anti-inflammatory drugs, targeted drugs, interferon and more, have been used and achieved certain curative effects. In addition, in view of the inertia characteristics of desmoid tumor, observation is also a first-line scheme recommended by multiple guidelines. In the past, the research progress of targeted therapy for desmoid tumor is relatively slow and the curative effect is limited. Thus, targeted therapy is usually used as a remedial treatment after the failure of other conventional treatment methods. However, in recent years, with the rapid progress in the basic research of targeted therapy, some new targeted drugs are increasingly used for the clinical treatment of desmoid tumor and have achieved good results. Herein, we described a patient with aggressive fibromatosis in the abdominal cavity. Following a combined treatment using anlotinib and celecoxib, the patient achieved a partial response with mild toxicity. Simultaneously, the patient’s pain symptoms completely disappeared. This case indicates that the combination of anlotinib and NSAIDs could be an effective treatment for desmoid tumor.

2022 ◽  
Stefan R Bornstein ◽  
Igor Shapiro ◽  
Maria Malyukov ◽  
Richard Züllig ◽  
Edlira Luca ◽  

The adrenal gland provides an important function by integrating neuronal, immune, vascular, metabolic and endocrine signals under a common organ capsule. It is the central organ of the stress response system and has been implicated in numerous stress-related disorders. While for other diseases, regeneration of healthy organ tissue has been aimed at such approaches are lacking for endocrine diseases - with the exception of type-I-diabetes. Moreover, tumor formation is very common, however, appropriate high-throughput applications reflecting the high heterogeneity and furthermore relevant 3D-structures in vitro are still widely lacking. Recently, we have initiated the development of standardized multidimensional models of a variety of endocrine cell/tissue sources in a new multiwell-format. Firstly, we confirmed common applicability for pancreatic pseudo-islets. Next, we translated applicability for spheroid establishment to adrenocortical cell lines as well as patient material to establish spheroids from malignant, but also benign adrenal tumors. We aimed furthermore at the development of bovine derived adrenal organoids and were able to establish steroidogenic active organoids containing both, cells of cortical and medullary origin. Overall, we hope to open new avenues for basic research, endocrine cancer and adrenal tissue-replacement therapies as we demonstrate potential for innovative mechanistic insights and personalized medicine in endocrine (tumor)-biology.

Alessandra Rodriguez y Baena ◽  
Andrea Casasco ◽  
Manuela Monti

AbstractOne of the most exciting advances in life science research is the development of 3D cell culture systems to obtain complex structures called organoids and spheroids. These 3D cultures closely mimic in vivo conditions, where cells can grow and interact with their surroundings. This allows us to better study the spatio-temporal dynamics of organogenesis and organ function. Furthermore, physiologically relevant organoids cultures can be used for basic research, medical research, and drug discovery. Although most of the research thus far focuses on the development of heart, liver, kidney, and brain organoids, to name a few, most recently, these structures were obtained using dental stem cells to study in vitro tooth regeneration. This review aims to present the most up-to-date research showing how dental stem cells can be grown on specific biomaterials to induce their differentiation in 3D. The possibility of combining engineering and biology principles to replicate and/or increase tissue function has been an emerging and exciting field in medicine. The use of this methodology in dentistry has already yielded many interesting results paving the way for the improvement of dental care and successful therapies. Graphical abstract

2022 ◽  
Jia Wei ◽  
Jin Wei

Abstract Doxorubicin is a very effective broad-spectrum anti-tumor drug, but it can cause dose-dependent cardiotoxicity and ultimately lead to heart failure. Previous studies have found that metformin exerts a cardioprotective effect through AMP-activated protein kinase (AMPK), but its effect on doxorubicin cardiotoxicity is still unclear. In order to investigate whether and how AMPK affects the ability of metformin to regulate the cardiotoxicity of doxorubicin, we have conducted two parts: clinical research and basic research. We found that metformin can reduce doxorubicin cardiotoxicity through clinical retrospective case-control study. Based on this, animal experiments were conducted to explore the molecular mechanism, and it was found that metformin was not associated with AMPK pathway, an important pathway of energy metabolism in the body, and this pathway did not play a protective role in doxorubicin induced cardiotoxicity. The reason may be related to decreased glucose utilization and mitochondrial autophagy of cardiomyocytes.

Sign in / Sign up

Export Citation Format

Share Document