linear chromosomes
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 43)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 119 (1) ◽  
pp. e2116159118
Author(s):  
Woo Suk Choi ◽  
Peter J. Weng ◽  
Wei Yang

Telomerase synthesizes telomeres at the ends of linear chromosomes by repeated reverse transcription from a short RNA template. Crystal structures of Tribolium castaneum telomerase reverse transcriptase (tcTERT) and cryoelectron microscopy (cryo-EM) structures of human and Tetrahymena telomerase have revealed conserved features in the reverse-transcriptase domain, including a cavity near the DNA 3′ end and snug interactions with the RNA template. For the RNA template to translocate, it needs to be unpaired and separated from the DNA product. Here we investigate the potential of the structural cavity to accommodate a looped-out DNA bulge and enable the separation of the RNA/DNA hybrid. Using tcTERT as a model system, we show that a looped-out telomeric repeat in the DNA primer can be accommodated and extended by tcTERT but not by retroviral reverse transcriptase. Mutations that reduce the cavity size reduce the ability of tcTERT to extend the looped-out DNA substrate. In agreement with cryo-EM structures of telomerases, we find that tcTERT requires a minimum of 4 bp between the RNA template and DNA primer for efficient DNA synthesis. We also have determined the ternary-complex structure of tcTERT including a downstream RNA/DNA hybrid at 2.0-Å resolution and shown that a downstream RNA duplex, equivalent to the 5′ template-boundary element in telomerase RNA, enhances the efficiency of telomere synthesis by tcTERT. Although TERT has a preformed active site without the open-and-closed conformational changes, it contains cavities to accommodate looped-out RNA and DNA. The flexible RNA–DNA binding likely underlies the processivity of telomeric repeat addition.


2021 ◽  
Author(s):  
Thomas Cech ◽  
Arthur Zaug

Abstract Telomeres, the natural ends of linear chromosomes, are comprised of repeat-sequence DNA and associated proteins1. Replication of telomeres allows continued proliferation of human stem cells and immortality of cancer cells2. Replication begins with telomerase3 extending the single-stranded DNA (ssDNA) of the telomeric G-strand [(TTAGGG)n]; the synthesis of the complementary C-strand [(CCCTAA)n] is much less well characterized. The CST (CTC1-STN1-TEN1) protein complex, a DNA Polymerase α-primase accessory factor4,5, is known to be required for telomere replication in vivo6,7,8,9, and the molecular analysis presented here reveals key features of its mechanism. We find that CST uses its ssDNA-binding activity to specify the origins for telomeric C-strand synthesis by bound Polα-primase. CST-organized DNA polymerization can copy a telomeric DNA template that folds into G-quadruplex structures, but the suboptimality of this template likely contributes to telomere replication problems observed in vivo. Combining telomerase, a short telomeric ssDNA primer, and CST-Polα-primase gives complete telomeric DNA replication, resulting in the same sort of ssDNA 3’-overhang found naturally on human telomeres. We conclude that the CST complex not only terminates telomerase extension10,11 and recruits Polα-primase to telomeric ssDNA4,12,13, but it also orchestrates C-strand synthesis. Because replication of the telomere has features distinct from replication of the rest of the genome, targeting telomere-replication components including CST holds promise for cancer therapeutics.


2021 ◽  
Author(s):  
Yao He ◽  
Song He ◽  
Henry Chan ◽  
Yaqiang Wang ◽  
Baocheng Liu ◽  
...  

Telomeres are the physical ends of linear chromosomes, composed of short repeating sequences (e.g. TTGGGG in Tetrahymena for the G-strand) of double-stranded DNA with a single-strand 3'-overhang of the G-strand and a group of proteins called shelterin. Among these, TPP1 and POT1 associate with the 3'-overhang, with POT1 binding the G-strand and TPP1 recruiting telomerase via interaction with telomerase reverse transcriptase (TERT). The ends of the telomeric DNA are replicated and maintained by telomerase, for the G-strand, and subsequently DNA Polymerase α-Primase (PolαPrim), for the C-strand. PolαPrim is stimulated by CTC1-STN1-TEN1 (CST), but the structural basis of both PolαPrim and CST recruitment to telomere ends remains unknown. Here we report cryo-EM structures of Tetrahymena CST in the context of telomerase holoenzyme, both in the absence and presence of PolαPrim, as well as of PolαPrim alone. Ctc1 binds telomerase subunit p50, a TPP1 ortholog, on a flexible Ctc1 binding motif unveiled jointly by cryo-EM and NMR spectroscopy. PolαPrim subunits are arranged in a catalytically competent conformation, in contrast to previously reported autoinhibited conformation. Polymerase POLA1 binds Ctc1 and Stn1, and its interface with Ctc1 forms an entry port for G-strand DNA to the POLA1 active site. Together, we obtained a snapshot of four key players required for telomeric DNA synthesis in a single complex-telomerase core RNP, p50/TPP1, CST and PolαPrim-that provides unprecedented insights into CST and PolαPrim recruitment and handoff between G-strand and C-strand synthesis.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7532
Author(s):  
Clive R. Bagshaw ◽  
Jendrik Hentschel ◽  
Michael D. Stone

Telomerases are moderately processive reverse transcriptases that use an integral RNA template to extend the 3′ end of linear chromosomes. Processivity values, defined as the probability of extension rather than dissociation, range from about 0.7 to 0.99 at each step. Consequently, an average of tens to hundreds of nucleotides are incorporated before the single-stranded sDNA product dissociates. The RNA template includes a six nucleotide repeat, which must be reset in the active site via a series of translocation steps. Nucleotide addition associated with a translocation event shows a lower processivity (repeat addition processivity, RAP) than that at other positions (nucleotide addition processivity, NAP), giving rise to a characteristic strong band every 6th position when the product DNA is analyzed by gel electrophoresis. Here, we simulate basic reaction mechanisms and analyze the product concentrations using several standard procedures to show how the latter can give rise to systematic errors in the processivity estimate. Complete kinetic analysis of the time course of DNA product concentrations following a chase with excess unlabeled DNA primer (i.e., a pulse-chase experiment) provides the most rigorous approach. This analysis reveals that the higher product concentrations associated with RAP arise from a stalling of nucleotide incorporation reaction during translocation rather than an increased rate constant for the dissociation of DNA from the telomerase.


2021 ◽  
Author(s):  
Kamil Szandar ◽  
Katarzyna Krawczyk ◽  
Kamil Myszczyński ◽  
Monika Ślipiko ◽  
Jakub Sawicki ◽  
...  

Abstract Background: The mitogenomes of vascular plants are one of the most structurally diverse molecules. In the present study we characterize mitogenome of a rare and endangered species Pulsatilla patens. We investigated the gene content and its RNA editing potential, repeats distribution and plastid derived sequences.Results: The mitogenome structure of early divergent eudicot, endangered Pulsatilla patens does not support the master chromosome hypothesis, revealing the presence of three linear chromosomes of total length 986 613 bp. The molecules are shaped by the presence of extremely long, exceeding 87 kbp, repeats and multiple chloroplast derived regions including nearly complete inverted repeat. Since the plastid IR content of Ranunculales is very characteristic, the incorporation into mitogenome could be explained rather by intracellular transfer than mitochondrial HGT. The mitogenome contains an almost complete set of genes known from other vascular plants with exception of rps10 and sdh3, the latter being present but pseudogenised. Analysis of long ORFs enabled the identification of genes which are rarely present in plant mitogenomes, including RNA and DNA polymerases, albeit their presence even at species level is variable. Mitochondrial transcripts of P. patens were edited with a high frequency, exceeding the level known in other analyzed angiosperms, despite strict qualification criteria of editing event’s count and analysis of generally less frequently edited leaf transcriptome. The total number of edited sites was 902 and nad4 was identified as the most edited gene with 65 C to U changes. Non-canonical, reverse U to C editing was not detected. Comparative analyses of mitochondrial genes of three Pulsatilla species revealed a level of variation comparable to chloroplast CDS dataset and much higher infrageneric differentiation than in other known angiosperm genera. The variation found in CDS of mitochondrial genes is comparable to values found among Pulsatilla plastomes. Despite a complicated mitogenome structure, 14 single copy regions not splitted by repeats or MTPT of 329 kbp revealed potential for phylogenetic, phylogeographic and population genetics studies by revealing intra- and interspecific collinearity.Conclusions: This studies provides valuable new information about mitochondrial genome of early divergent eudicots, Pulsatilla patens, revealed multi-chromosomal structure and shed new light on mitogenomics of early eudicots.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1510
Author(s):  
Michael Hecker ◽  
Jan Bühring ◽  
Brit Fitzner ◽  
Paulus Stefan Rommer ◽  
Uwe Klaus Zettl

Telomeres are protective structures at the ends of linear chromosomes. Shortened telomere lengths (TL) are an indicator of premature biological aging and have been associated with a wide spectrum of disorders, including multiple sclerosis (MS). MS is a chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system. The exact cause of MS is still unclear. Here, we provide an overview of genetic, environmental and lifestyle factors that have been described to influence TL and to contribute to susceptibility to MS and possibly disease severity. We show that several early-life factors are linked to both reduced TL and higher risk of MS, e.g., adolescent obesity, lack of physical activity, smoking and vitamin D deficiency. This suggests that the mechanisms underlying the disease are connected to cellular aging and senescence promoted by increased inflammation and oxidative stress. Additional prospective research is needed to clearly define the extent to which lifestyle changes can slow down disease progression and prevent accelerated telomere loss in individual patients. It is also important to further elucidate the interactions between shared determinants of TL and MS. In future, cell type-specific studies and advanced TL measurement methods could help to better understand how telomeres may be causally involved in disease processes and to uncover novel opportunities for improved biomarkers and therapeutic interventions in MS.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258156
Author(s):  
Valeriya Morgunova ◽  
Maria Kordyukova ◽  
Elena A. Mikhaleva ◽  
Ivan Butenko ◽  
Olga V. Pobeguts ◽  
...  

Telomeres are nucleoprotein complexes that protect the ends of eukaryotic linear chromosomes from degradation and fusions. Telomere dysfunction leads to cell growth arrest, oncogenesis, and premature aging. Telomeric RNAs have been found in all studied species; however, their functions and biogenesis are not clearly understood. We studied the mechanisms of development disorders observed upon overexpression of telomeric repeats in Drosophila. In somatic cells, overexpression of telomeric retrotransposon HeT-A is cytotoxic and leads to the accumulation of HeT-A Gag near centrosomes. We found that RNA and RNA-binding protein Gag encoded by the telomeric retrotransposon HeT-A interact with Polo and Cdk1 mitotic kinases, which are conserved regulators of centrosome biogenesis and cell cycle. The depletion of proteins Spindle E, Ccr4 or Ars2 resulting in HeT-A overexpression in the germline was accompanied by mislocalization of Polo as well as its abnormal stabilization during oogenesis and severe deregulation of centrosome biogenesis leading to maternal-effect embryonic lethality. These data suggest a mechanistic link between telomeric HeT-A ribonucleoproteins and cell cycle regulators that ensures the cell response to telomere dysfunction.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1335
Author(s):  
Hans-Jürgen Gruber ◽  
Maria Donatella Semeraro ◽  
Wilfried Renner ◽  
Markus Herrmann

Telomeres are at the non-coding ends of linear chromosomes. Through a complex 3-dimensional structure, they protect the coding DNA and ensure appropriate separation of chromosomes. Aging is characterized by a progressive shortening of telomeres, which compromises their structure and function. Because of their protective function for genomic DNA, telomeres appear to play an important role in the development and progression of many age-related diseases, such as cardiovascular disease (CVD), malignancies, dementia, and osteoporosis. Despite substantial evidence that links telomere length with these conditions, the nature of these observations remains insufficiently understood. Therefore, future studies should address the question of causality. Furthermore, analytical methods should be further improved with the aim to provide informative and comparable results. This review summarize the actual knowledge of telomere biology and the possible implications of telomere dysfunction for the development and progression of age-related diseases. Furthermore, we provide an overview of analytical techniques for the measurement of telomere length and telomerase activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mostafa Rahnama ◽  
Baohua Wang ◽  
Jane Dostart ◽  
Olga Novikova ◽  
Daniel Yackzan ◽  
...  

Telomeres form the ends of linear chromosomes and usually comprise protein complexes that bind to simple repeated sequence motifs that are added to the 3′ ends of DNA by the telomerase reverse transcriptase (TERT). One of the primary functions attributed to telomeres is to solve the “end-replication problem” which, if left unaddressed, would cause gradual, inexorable attrition of sequences from the chromosome ends and, eventually, loss of viability. Telomere-binding proteins also protect the chromosome from 5′ to 3′ exonuclease action, and disguise the chromosome ends from the double-strand break repair machinery whose illegitimate action potentially generates catastrophic chromosome aberrations. Telomeres are of special interest in the blast fungus, Pyricularia, because the adjacent regions are enriched in genes controlling interactions with host plants, and the chromosome ends show enhanced polymorphism and genetic instability. Previously, we showed that telomere instability in some P. oryzae strains is caused by novel retrotransposons (MoTeRs) that insert in telomere repeats, generating interstitial telomere sequences that drive frequent, break-induced rearrangements. Here, we sought to gain further insight on telomeric involvement in shaping Pyricularia genome architecture by characterizing sequence polymorphisms at chromosome ends, and surrounding internalized MoTeR loci (relics) and interstitial telomere repeats. This provided evidence that telomere dynamics have played historical, and likely ongoing, roles in shaping the Pyricularia genome. We further demonstrate that even telomeres lacking MoTeR insertions are poorly preserved, such that the telomere-adjacent sequences exhibit frequent presence/absence polymorphism, as well as exchanges with the genome interior. Using TERT knockout experiments, we characterized chromosomal responses to failed telomere maintenance which suggested that much of the MoTeR relic-/interstitial telomere-associated polymorphism could be driven by compromised telomere function. Finally, we describe three possible examples of a phenomenon known as “Adaptive Telomere Failure,” where spontaneous losses of telomere maintenance drive rapid accumulation of sequence polymorphism with possible adaptive advantages. Together, our data suggest that telomere maintenance is frequently compromised in Pyricularia but the chromosome alterations resulting from telomere failure are not as catastrophic as prior research would predict, and may, in fact, be potent drivers of adaptive polymorphism.


2021 ◽  
Vol 9 (7) ◽  
pp. 1405
Author(s):  
Raffaella Diotti ◽  
Michelle Esposito ◽  
Chang Hui Shen

Telomeres are long non-coding regions found at the ends of eukaryotic linear chromosomes. Although they have traditionally been associated with the protection of linear DNA ends to avoid gene losses during each round of DNA replication, recent studies have demonstrated that the role of these sequences and their adjacent regions go beyond just protecting chromosomal ends. Regions nearby to telomeric sequences have now been identified as having increased variability in the form of duplications and rearrangements that result in new functional abilities and biodiversity. Furthermore, unique fungal telomeric and chromatin structures have now extended clinical capabilities and understanding of pathogenicity levels. In this review, telomere structure, as well as functional implications, will be examined in opportunistic fungal pathogens, including Aspergillus fumigatus, Candida albicans, Candida glabrata, and Pneumocystis jirovecii.


Sign in / Sign up

Export Citation Format

Share Document