scholarly journals Poleward Propagation of Typhoon-Induced Near-Inertial Waves in the Northern South China Sea

2021 ◽  
Vol 8 ◽  
Author(s):  
Ruhui Huang ◽  
Xiaohui Xie ◽  
Jianyu Hu ◽  
Zhenyu Sun

One of the main responses of the ocean to typhoons is the generation of near-inertial waves (NIWs), whose intrinsic frequency is close to the local inertial frequency. Based on the mooring observations, we carefully investigated the spatial–temporal variations in NIWs in the northern South China Sea (SCS) after Typhoon “Haima,” which passed through the northern SCS from October 20 to 21, 2016, with its track parallel to the mooring array on its northeast side. Moorings in different locations responded differently to this typhoon, with stronger NIWs found on the continental slope to the shelf break and relatively weak NIWs found on the shallow continental shelf. Strong NIWs appeared twice within a short period and showed different characteristics and frequencies. The first NIWs were generated locally with blue-shifted (super-inertial) frequencies. These initial NIWs were dominated by the first three baroclinic modes and rapidly weakened due to their propagation away and local dissipation. However, the second NIWs mainly consisted of higher baroclinic modes with red-shifted (sub-inertial) frequencies. The analysis of the mean background flow revealed that these red-shifted NIWs were excited at low latitudes, and subsequently advected by the poleward background flow to moorings whose latitudes were higher than their critical latitudes. Higher-mode (n > 3) NIWs were more easily carried away by mean background flow, and, at the same time, high-mode NIWs propagated downward to the subsurface layer, leading to the significant elevation of velocity shear therein. Given these findings, the mean background flow may provide an important route to redistributing the energy of the upper ocean imported from typhoons.

2019 ◽  
Vol 18 (5) ◽  
pp. 1013-1021
Author(s):  
Guanlin Wang ◽  
Dawei Li ◽  
Zexun Wei ◽  
Shujiang Li ◽  
Yonggang Wang ◽  
...  

2021 ◽  
Author(s):  
Wei Ma ◽  
Hongwei Zhang ◽  
Chenyi Luo ◽  
Yanhui Wang ◽  
Yang Song

Abstract. Internal solitary waves (ISWs) are typical large-amplitude nonlinear waves occurring in stratified oceans. The in situ observations of ISWs are needed to improve the regimes of nonlinear internal wave theories. There is violent mixing of water mass in the horizontal and vertical directions during the propagation of ISWs, which generally lasts for a short period at a fixed position. However, an underwater glider, with the features of low-speed and sawtooth motion, cannot obtain a complete thermohaline stratification before and after the ISWs arrival. Those thermohaline data collected in situ by gliders, which vary synchronously at spatial-temporal scales, raise challenges for identifying the ISWs. Four Petrel-II gliders are deployed in the active region of ISWs in the South China Sea. This paper estimates vertical water velocity from glider flight data and kinematic model, analyzes the sensitivity of parameters in the glider kinematic model, and adopts a standard nonlinear search method to calibrate the parameters insensitive to the vertical velocity. The depth-keeping experiment is performed to verify the effectiveness of the optimized results. The standard deviation of vertical water velocity in the eastern Dongsha Atoll is revealed, and its distribution indirectly reflects that the strength of vertical water activity increases gradually at the same latitude along the east-west direction. Using observations of vertical water velocity fluctuations and isothermal surface vertical displacements, single- and multiple-wave packets can be identified. The availability of this method is tested by comparison with a MODIS image. Such an analysis provides a basis for the application of glider in the observation of ISWs.


2011 ◽  
Vol 31 (4) ◽  
pp. 105-112
Author(s):  
Guangxu ZHANG ◽  
Shiguo WU ◽  
Weilin ZHU ◽  
Hesheng SHI ◽  
Duanxin CHEN

Sign in / Sign up

Export Citation Format

Share Document