internal solitary waves
Recently Published Documents


TOTAL DOCUMENTS

512
(FIVE YEARS 131)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Vol 933 ◽  
Author(s):  
Samuel G. Hartharn-Evans ◽  
Magda Carr ◽  
Marek Stastna ◽  
Peter A. Davies

This combined numerical/laboratory study investigates the effect of stratification form on the shoaling characteristics of internal solitary waves propagating over a smooth, linear topographic slope. Three stratification types are investigated, namely (i) thin tanh (homogeneous upper and lower layers separated by a thin pycnocline), (ii) surface stratification (linearly stratified layer overlaying a homogeneous lower layer) and (iii) broad tanh (continuous density gradient throughout the water column). It is found that the form of stratification affects the breaking type associated with the shoaling wave. In the thin tanh stratification, good agreement is seen with past studies. Waves over the shallowest slopes undergo fission. Over steeper slopes, the breaking type changes from surging, through collapsing to plunging with increasing wave steepness $A_w/L_w$ for a given topographic slope, where $A_w$ and $L_w$ are incident wave amplitude and wavelength, respectively. In the surface stratification regime, the breaking classification differs from the thin tanh stratification. Plunging dynamics is inhibited by the density gradient throughout the upper layer, instead collapsing-type breakers form for the equivalent location in parameter space in the thin tanh stratification. In the broad tanh profile regime, plunging dynamics is likewise inhibited and the near-bottom density gradient prevents the collapsing dynamics. Instead, all waves either fission or form surging breakers. As wave steepness in the broad tanh stratification increases, the bolus formed by surging exhibits evidence of Kelvin–Helmholtz instabilities on its upper boundary. In both two- and three-dimensional simulations, billow size grows with increasing wave steepness, dynamics not previously observed in the literature.


2021 ◽  
Vol 9 (12) ◽  
pp. 1419
Author(s):  
Xiaolin Ou ◽  
Junjiang Zhu ◽  
Sanzhong Li ◽  
Yonggang Jia ◽  
Zhongjia Jia ◽  
...  

We processed the raw multi-beam bathymetry data acquired in the central and northeastern part of the South China Sea by eliminating noise and abnormal water depth values caused by environmental factors, and a high resolution bathymetric map with a 20-m grid interval was constructed. Various scales of seafloor geomorphological features were identified from the data, including an image of Shenhu canyon, which is located in the northern continental margin of the South China Sea; submarine reticular dunes in the north of the Dongsha atoll; submarine parallel dunes in the northeast of the Dongsha atoll; and several seamounts in the southwest sub-basin and in the east sub-basin. In the processing step, various anomalies in the multi-beam bathymetry data were corrected. The optimal swath filtering and surface filtering methods were chosen for different scales of seafloor topography in order to restore the true geomorphological features. For the large-scale features with abrupt elevation changes, such as seamounts (heights of ~111–778 m) and submarine canyons (incision height of ~90–230 m), we applied swath filtering to remove noise from the full water depth range of the data, and then surface filtering to remove small noises in the local areas. For the reticular dunes and parallel dunes (heights of ~2–32 m), we applied only surface filtering to refine the data. Based on the geometries of the geomorphological features with different scales, the marine hydrodynamic conditions, and the regional structure in the local areas, we propose that the Shenhu submarine canyon was formed by turbidity current erosion during the Sag subsidence and the sediment collapse. The submarine reticular dunes in the north of the Dongsha atoll were built by the multi-direction dominant currents caused by the previously recognised internal solitary waves around the Dongsha atoll. The submarine parallel dunes in the northeast of the Dongsha atoll were built by the repeated washing of sediments with the influence of the tidal currents and internal solitary waves. The conical, linear and irregular seamounts identified from the bathymetry data were formed during the spreading of the southwest sub-basin and the east sub-basin. The identified seamounts in the multi-beam bathymetry data are correlated to deep magmatic activities, the Zhongnan transform fault and the NE-trending faults.


2021 ◽  
Vol 944 (1) ◽  
pp. 012056
Author(s):  
I A Prasetya ◽  
A S Atmadipoera ◽  
S Budhiman ◽  
U C Nugroho

Abstract >The southern Andaman waters has been well known as one of the strongest generating and propagating area of internal solitary waves (ISWs), generated by semidiurnal barotropic tidal currents that impinge submarine ridge offshore western Weh. This study aims to investigate sea surface features of internal tides and tidal current around the submarine ridge and adjacent Weh-Aceh waters, derived from satellite imagery datasets (January-May 2018) and CROCO model-output datasets. The results show that sea surface signatures of ISWs are characterized by a strong radar signal backscattering of a dense ripple package in the generating area and two groups of ISWs arch in the propagating area, where the distance of the package groups and wavelengths vary 60-80 km and 9-163 km, respectively. Observed ISWs in March 2018 was 31. The satellite and model datasets suggest that generating area of internal waves is confined over the Breuh ridge. Here, the very strong semidiurnal (M2) barotropic tidal currents of 0.5-5.0 m/s are observed. During high-tide, amplified barotropic tidal currents acrossing the ridge flow partly southeastward into the Weh-Breuh passage. The model suggests that generating internal tidal waves over the ridge are manifested by strong vertical perturbation of isopycnal and current stratifications in the Lee-waves area.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yingci Feng ◽  
Qunshu Tang ◽  
Jian Li ◽  
Jie Sun ◽  
Wenhuan Zhan

Internal solitary waves (ISWs) are investigated offshore of Guangdong in the northern South China Sea (SCS) using high-frequency acoustic backscatter data of 100 kHz acquired in July 2020. Simultaneous XBT profiles and satellite images are incorporated to understand their propagation, evolution, and dissipation processes in shallow water at depths less than 50 m. The water column structures revealed by acoustic backscatter data and XBT profiles are consistent with a small difference of less than 3 m. A soliton train with apparent vertical and horizontal scales of ∼7 and 100 m, respectively, is captured three times in 20 h in the repeated acoustic sections, which provides spatiotemporal constraints to the solitons. The characteristics of ISW phase speeds are estimated from acoustic backscatter data and satellite data and using theoretical two-layer Korteweg-de Vries (KdV) and extended KdV (eKdV) models. The acoustically observed phase speed of ISWs is approximately 0.4–0.5 m/s, in agreement with the estimates from both satellite data and model results. The shallow solar-heated water in summer (∼10–20 m) lying on the bottom cold water is responsible for the extensive occurrence of ISWs in the study region. ISWs are dissipated at the transition zone between the heated surface water and the upwelled water, forming a wide ISW dissipation zone in the coastal area, as observed from satellites. The acoustic backscatter method could be an effective way to observe ISWs with high resolution in shallow water and thus a potential compensatory technique for imaging the shallow blind zone of so-called seismic oceanography.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haibin Song ◽  
Yi Gong ◽  
Shengxiong Yang ◽  
Yongxian Guan

High spatial resolution and deep detection depths of seismic reflection surveying are conducive to studying the fine structure of the internal solitary wave. However, seismic images are instantaneous, which are not conducive to observing kinematic processes of the internal solitary waves. We improved the scheme of seismic data processing and used common-offset gathers to continuously image the same location. In this way, we can observe internal fine structure changes during the movement of the internal solitary waves, especially the part in contact with the seafloor. We observed a first-mode depression internal solitary wave on the continental slope near the Dongsha Atoll of the South China Sea and short-term shoaling processes of the internal solitary wave by using our improved method. We found that the change in shape of waveform varies at different depths. We separately analyzed the evolution of the six waveforms at different depths. The results showed that the waveform in deep water deforms before that in shallow water and the waveform in shallow water deforms to a greater degree. We measured four parameters of the six waveforms during the shoaling including phase velocity, amplitude, wavelength, and slopes of leading and trailing edge. The phase velocity and amplitudes of waveforms in shallow water increase, the wavelengths decrease, and the slopes of trailing edge gradually become larger than that of the leading edge, while the amplitudes of the deep water waveforms do not change significantly and the phase velocities decrease. Our results are consistent with previous studies made by numerical simulations, which suggest the effectiveness of the new processing scheme. This improved scheme cannot only study the internal solitary waves shoaling, but also has great potential in the study of other ocean dynamics.


2021 ◽  
Vol 9 (11) ◽  
pp. 1224
Author(s):  
Yingjie Hu ◽  
Li Zou ◽  
Xinyu Ma ◽  
Zhe Sun ◽  
Aimin Wang ◽  
...  

In this study, the propagation and evolution characteristics of internal solitary waves on slope topography in stratified fluids were investigated. A numerical model of internal solitary wave propagation based on the nonlinear potential flow theory using the multi-domain boundary element method was developed and validated. The numerical model was used to calculate the propagation process of internal solitary waves on the topography with different slope parameters, including height and angle, and the influence of slope parameters, initial amplitude, and densities jump of two-layer fluid on the evolution of internal solitary waves is discussed. It was found that the wave amplitude first increased while climbing the slope and then decreased after passing over the slope shoulder based on the calculation results, and the wave amplitude reached a maximum at the shoulder of the slope. A larger height and angle of the slope can induce larger maximum wave amplitude and more obvious tail wave characteristics. The wave amplitude gradually decreased, and a periodic tail wave was generated when propagating on the plateau after passing the slope. Both frequency and height of the tail wave were affected by the geometric parameters of the slope bottom; however, the initial amplitude of the internal solitary wave only affects the tail wave height, but not the frequency of the tail wave.


Author(s):  
Yunchao Yang ◽  
Xiaodong Huang ◽  
Wei Zhao ◽  
Chun Zhou ◽  
Siwei Huang ◽  
...  

AbstractThe complex behaviors of internal solitary waves (ISWs) in the Andaman Sea were revealed using data collected over nearly 22-month-long observation period completed by two moorings. Emanating from the submarine ridges northwest of Sumatra Island and south of Car Nicobar, two types of ISWs, referred to as S- and C-ISWs, respectively, were identified in the measurements, and S-ISWs were generally found to be stronger than C-ISWs. The observed S- and C-ISWs frequently appeared as multi-wave packets, accounting for 87% and 43% of their observed episodes, respectively. The simultaneous measurements collected by the two moorings featured evident variability along the S-ISW crests, with the average wave amplitude in the northern portion being 36% larger than that in the southern portion. The analyses of the arrival times revealed that the S-ISWs in the northern portion occurred more frequently and arrived more irregularly than those in the southern portion. Moreover, the temporal variability of ISWs drastically differed on monthly and seasonal time scales, characterized by relatively stronger S-ISWs in spring and autumn. Over interannual time scale, the temporal variations in ISWs were generally subtle. The monthly-to-annual variations of ISWs could be mostly explained by the variability in stratification, which could be modulated by the monsoons, the winds in equatorial Indian Ocean and the mesoscale eddies in Andaman Sea. From careful analyses preformed based on the long-term measurements, we argued that the observed ISWs were likely generated via internal tide release mechanism and their generation processes were obviously modulated by background circulations.


Sign in / Sign up

Export Citation Format

Share Document