synaptotagmin 1
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 113)

H-INDEX

46
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Josep Rizo ◽  
Levent Sari ◽  
Yife Qi ◽  
Wonpil Im ◽  
Milo M Lin

Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of synaptotagmin-1 and/or complexin-1. Our results help visualize potential states of the release machinery en route to fusion, and suggest mechanistic features that may control the speed of release. In particular, the simulations suggest that the primed state contains almost fully assembled trans-SNARE complexes bound to the synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration where interactions of the C2B domain with the plasma membrane orient complexin-1 toward the vesicle, avoiding premature membrane merger but keeping the system ready for fast fusion upon Ca2+ influx.


2021 ◽  
Author(s):  
Christopher Small ◽  
Callista Harper ◽  
Christiana Kontaxi ◽  
Elizabeth Davenport ◽  
Tristan Wallis ◽  
...  

Following exocytosis, the recapture of vesicular proteins stranded at the plasma membrane in recycling synaptic vesicles (SVs) is essential to sustain neurotransmission. Nanoclustering is emerging as a mechanism through which proteins may be pre-assembled prior to endocytosis, to ensure high fidelity of retrieval for subsequent rounds of vesicle fusion. Here, we used single molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A). Syt1 forms surface nanoclusters through interaction of its C2B domain (K326/K328) with SV2A, as demonstrated by mutating Syt1 (K326A/K328A) and knocking down endogenous SV2A. Blocking cognate interaction with Syt1 (SV2AT84A) also decreased SV2A clustering. Impaired nanoclustering of Syt1 and SV2A leads to accelerated endocytosis of Syt1, altered intracellular sorting and decreased trafficking of Syt1 to a Rab5-positive endocytic pathway. We conclude that the interaction between SV2A and Syt1 locks both molecules into surface nanoclusters, controlling their entry into recycling SVs.


Nano Letters ◽  
2021 ◽  
Author(s):  
Joern Dietz ◽  
Marieelen Oelkers ◽  
Raphael Hubrich ◽  
Angel Pérez-Lara ◽  
Reinhard Jahn ◽  
...  

Author(s):  
Prabhodh S. Abbineni ◽  
Joseph S. Briguglio ◽  
Edwin R. Chapman ◽  
Ronald W. Holz ◽  
Daniel Axelrod

Granule-plasma membrane docking and fusion can only occur when proteins that enable these reactions are present at the granule-plasma membrane contact. Thus, the mobility of granule membrane proteins may influence docking, and membrane fusion. We measured the mobility of vesicle associated membrane protein 2 (VAMP2), synaptotagmin 1 (Syt1), and synaptotagmin 7 (Syt7) in chromaffin granule membranes in living chromaffin cells. We used a method that is not limited by standard optical resolution. A bright flash of strongly decaying evanescent field produced by total internal reflection (TIR) was used to photobleach GFP-labeled proteins in the granule membrane. Fluorescence recovery occurs as unbleached protein in the granule membrane distal from the glass interface diffuses into the more bleached proximal regions, enabling the measurement of diffusion coefficients. We found that VAMP2-EGFP and Syt7-EGFP are mobile with a diffusion coefficient of approximately 3 × 10-10 cm2/s. Syt1-EGFP mobility was below the detection limit. Utilizing these diffusion parameters, we estimated the time required for these proteins to arrive at docking and nascent fusion sites to be many tens of milliseconds. Our analyses raise the possibility that the diffusion characteristics of VAMP2 and Syt proteins could be a factor that influences the rate of exocytosis.


2021 ◽  
Vol 17 (S2) ◽  
Author(s):  
Armaan Jamal ◽  
Sebastian Markert ◽  
Shigeki Watanabe

2021 ◽  
Author(s):  
Ary Lautaro Di Bartolo ◽  
Diego Masone

Synaptotagmin-1 is a low-affinity Ca2+ sensor that triggers synchronous vesicle fusion. It contains two similar C2 domains (C2A and C2B) that cooperate in membrane binding, being the C2B domain the main responsible for the membrane fusion process due to its polybasic patch KRLKKKKTTIKK (321-332). In this work, a master-servant mechanism between two identical C2B domains is shown to control the formation of the fusion stalk. Two regions in C2B are essential for the process, the well-known polybasic patch and a recently described pair of arginines (398,399). The master domain shows strong PIP2 interactions with its polybasic patch and its pair of arginines. At the same time, the servant analogously cooperates with the master to reduce the total work to form the fusion stalk. The strategic mutation (T328E,T329E) in both master and servant domains disrupts the cooperative mechanism, drastically increasing the free energy needed to induce the fusion stalk, however with negligible effects on the master domain interactions with PIP2. These data point to a difference in the behavior of the servant domain, which is unable to sustain its PIP2 interactions neither through its polybasic patch nor through its pair of arginines, in the end losing its ability to assist the master in the formation of the fusion stalk.


2021 ◽  
Vol 118 (48) ◽  
pp. e2113859118
Author(s):  
Kevin C. Courtney ◽  
Jason D. Vevea ◽  
Yueqi Li ◽  
Zhenyong Wu ◽  
Zhao Zhang ◽  
...  

Synaptotagmin 1 (syt1) is a Ca2+ sensor that regulates synaptic vesicle exocytosis. Cell-based experiments suggest that syt1 functions as a multimer; however, biochemical and electron microscopy studies have yielded contradictory findings regarding putative self-association. Here, we performed dynamic light scattering on syt1 in solution, followed by electron microscopy, and we used atomic force microscopy to study syt1 self-association on supported lipid bilayers under aqueous conditions. Ring-like multimers were clearly observed. Multimerization was enhanced by Ca2+ and required anionic phospholipids. Large ring-like structures (∼180 nm) were reduced to smaller rings (∼30 nm) upon neutralization of a cluster of juxtamembrane lysine residues; further substitution of residues in the second C2-domain completely abolished self-association. When expressed in neurons, syt1 mutants with graded reductions in self-association activity exhibited concomitant reductions in 1) clamping spontaneous release and 2) triggering and synchronizing evoked release. Thus, the juxtamembrane linker of syt1 plays a crucial role in exocytosis by mediating multimerization.


2021 ◽  
Author(s):  
Jorge Ramirez-Franco ◽  
Fodil Azzaz ◽  
Marion Sangiardi ◽  
G&eacuteraldine Ferracci ◽  
Fahamoe Youssouf ◽  
...  

Botulinum neurotoxin serotype B (BoNT/B) uses two separate protein and polysialoglycolipid-binding pockets to interact with synaptotagmin 1/2 and gangliosides. However, an integrated model of this therapeutic tool bound to its neuronal receptors in a native membrane topology is still lacking. Using a panel of in silico and experimental approaches, we present here a new model for BoNT/B binding to neuronal membranes, in which the toxin binds to a preassembled synaptotagmin-ganglioside GT1b complex and a free ganglioside. This interaction allows a lipid-binding loop of BoNT/B to engage in a series of concomitant interactions with the glycone part of GT1b and the transmembrane domain of synaptotagmin. Furthermore, our data provide molecular support for the decrease in BoNT/B sensitivity in Felidae that harbor the natural variant synaptotagmin2-N59Q. These results reveal multiple interactions of BoNT/B with gangliosides and support a novel paradigm in which a toxin recognizes a protein/ganglioside complex.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009994
Author(s):  
Hatim Thaker ◽  
Jie Zhang ◽  
Shin-Ichiro Miyashita ◽  
Vivian Cristofaro ◽  
SunHyun Park ◽  
...  

Botulinum neurotoxins (BoNTs) are the most potent toxins known and are also utilized to treat a wide range of disorders including muscle spasm, overactive bladder, and pain. BoNTs’ ability to target neurons determines their specificity, potency, and therapeutic efficacy. Homologous synaptic vesicle membrane proteins synaptotagmin-1 (Syt1) and synaptotagmin-2 (Syt2) have been identified as receptors for BoNT family members including BoNT/B, DC, and G, but their contributions at physiologically relevant toxin concentrations in vivo have yet to be validated and established. Here we generated two knockin mutant mouse models containing three designed point-mutations that specifically disrupt BoNT binding in endogenous Syt1 or Syt2, respectively. Utilizing digit abduction score assay by injecting toxins into the leg muscle, we found that Syt1 mutant mice showed similar sensitivity as the wild type mice, whereas Syt2 mutant mice showed reduced sensitivity to BoNT/B, DC, and G, demonstrating that Syt2 is the dominant receptor at skeletal neuromuscular junctions. We further developed an in vivo bladder injection assay for analyzing BoNT action on bladder tissues and demonstrated that Syt1 is the dominant toxin receptor in autonomic nerves controlling bladder tissues. These findings establish the critical role of protein receptors for the potency and specificity of BoNTs in vivo and demonstrate the differential contributions of Syt1 and Syt2 in two sets of clinically relevant target tissues.


2021 ◽  
Author(s):  
Katrina M. MacLeod ◽  
Sangeeta Pandya

AbstractIn the avian auditory brain stem, acoustic timing and intensity cues are processed in separate, parallel pathways via the two division of the cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Differences in excitatory and inhibitory synaptic properties, such as release probability and short-term plasticity, contribute to differential processing of the auditory nerve inputs. We investigated the distribution of synaptotagmin, a putative calcium sensor for exocytosis, via immunohistochemistry and double immunofluorescence in the embryonic and hatchling chick brain stem (Gallus gallus). We found that the two major isoforms, synaptotagmin 1 (Syt1) and synaptotagmin 2 (Syt2), showed differential expression. In the NM, anti-Syt2 label was strong and resembled the endbulb terminals of the auditory nerve inputs, while anti-Syt1 label was weaker and more punctate. In NA, both isoforms were intensely expressed throughout the neuropil. A third isoform, synaptotagmin 7 (Syt7), was largely absent from the cochlear nuclei. In nucleus laminaris (NL, the target nucleus of NM), anti-Syt2 and anti-Syt7 strongly labeled the dendritic lamina. These patterns were established by embryonic day 18 and persisted to postnatal day 7. Double labeling immunofluorescence showed Syt1 and Syt2 were associated with Vesicular Glutamate Transporter 2 (VGluT2), but not Vesicular GABA Transporter (VGAT), suggesting these Syt isoforms were localized to excitatory, but not inhibitory, terminals. These results suggest that Syt2 is the major calcium binding protein underlying excitatory neurotransmission in the timing pathway comprising NM and NL, while Syt2 and Syt1 regulate excitatory transmission in the parallel intensity pathway via cochlear nucleus NA.


Sign in / Sign up

Export Citation Format

Share Document