scholarly journals Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency

Author(s):  
Fang Han ◽  
Zhijie Wang ◽  
Hong Fan
2017 ◽  
Author(s):  
Abed Ghanbari ◽  
Christopher M. Lee ◽  
Heather L. Read ◽  
Ian H. Stevenson

AbstractNeural responses to repeated presentations of an identical stimulus often show substantial trial-to-trial variability. How the mean firing rate varies in response to different stimuli or during different movements (tuning curves) has been extensively modeled in a wide variety of neural systems. However, the variability of neural responses can also have clear tuning independent of the tuning in the mean firing rate. This suggests that the variability could contain information regarding the stimulus/movement beyond what is encoded in the mean firing rate. Here we demonstrate how taking variability into account can improve neural decoding. In a typical neural coding model spike counts are assumed to be Poisson with the mean response depending on an external variable, such as a stimulus or movement. Bayesian decoding methods then use the probabilities under these Poisson tuning models (the likelihood) to estimate the probability of each stimulus given the spikes on a given trial (the posterior). However, under the Poisson model, spike count variability is always exactly equal to the mean (Fano factor = 1). Here we use two alternative models - the Conway-Maxwell-Poisson (CMP) model and Negative Binomial (NB) model - to more flexibly characterize how neural variability depends on external stimuli. These models both contain the Poisson distribution as a special case but have an additional parameter that allows the variance to be greater than the mean (Fano factor >1) or, for the CMP model, less than the mean (Fano factor <1). We find that neural responses in primary motor (M1), visual (V1), and auditory (A1) cortices have diverse tuning in both their mean firing rates and response variability. Across cortical areas, we find that Bayesian decoders using the CMP or NB models improve stimulus/movement estimation accuracy by 4-12% compared to the Poisson model. Moreover, the uncertainty of the non-Poisson decoders more accurately reflects the magnitude of estimation errors. In addition to tuning curves that reflect average neural responses, stimulus-dependent response variability may be an important aspect of the neural code. Modeling this structure could, potentially, lead to improvements in brain machine interfaces.


2020 ◽  
Author(s):  
Shawn M. Willett ◽  
Jennifer M. Groh

AbstractHow we distinguish multiple simultaneous stimuli is uncertain, particularly given that such stimuli sometimes recruit largely overlapping populations of neurons. One hypothesis is that tuning curves might change to limit the number of stimuli driving any given neuron when multiple stimuli are present. To test this hypothesis, we recorded the activity of neurons in the inferior colliculus while monkeys localized either one or two simultaneous sounds differing in frequency. Although monkeys easily distinguished simultaneous sounds (∼90% correct performance), the frequency tuning of inferior colliculus neurons on dual sound trials did not improve in any obvious way. Frequency selectivity was degraded on dual sound trials compared to single sound trials: tuning curves broadened, and frequency accounted for less of the variance in firing rate. These tuning curve changes led a maximum-likelihood decoder to perform worse on dual sound trials than on single sound trials. These results fail to support the hypothesis that changes in frequency response functions serve to reduce the overlap in the representation of simultaneous sounds. Instead these results suggest alternative theories, such as recent evidence of alternations in firing rate between the rates corresponding to each of the two stimuli, offer a more promising approach.


NeuroImage ◽  
2014 ◽  
Vol 102 ◽  
pp. 451-457 ◽  
Author(s):  
Amir Homayoun Javadi ◽  
Iva K. Brunec ◽  
Vincent Walsh ◽  
Will D. Penny ◽  
Hugo J. Spiers

2010 ◽  
Vol 68 ◽  
pp. e151
Author(s):  
Hiroki Tanaka ◽  
Yusuke Asada ◽  
Rintaro Mizoguchi ◽  
Izumi Ohzwa ◽  
Ichiro Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document