scholarly journals Commissioning of GPU–Accelerated Monte Carlo Code FRED for Clinical Applications in Proton Therapy

2021 ◽  
Vol 8 ◽  
Author(s):  
Jan Gajewski ◽  
Magdalena Garbacz ◽  
Chih-Wei Chang ◽  
Katarzyna Czerska ◽  
Marco Durante ◽  
...  

We present commissioning and validation of Fred, a graphical processing unit (GPU)–accelerated Monte Carlo code, for two proton beam therapy facilities of different beam line design: CCB (Krakow, IBA) and EMORY (Atlanta, Varian). We followed clinical acceptance tests required to approve the certified treatment planning system for clinical use. We implemented an automated and efficient procedure to build a parameter library characterizing the clinical proton pencil beam. Beam energy, energy spread, lateral propagation model, and a dosimetric calibration factor were parametrized based on measurements performed during the facility start-up. The Fred beam model was validated against commissioning and supplementary measurements performed with and without range shifter. We obtained 1) submillimeter agreement of Bragg peak shapes in water and lateral beam profiles in air and slab phantoms, 2) <2% dose agreement for spread out Bragg peaks of different ranges, 3) average gamma index (2%/2 mm) passing rate of >95% for >1000 patient verification measurements using a two-dimensional array of ionization chambers, and 4) gamma index passing rate of >99% for three-dimensional dose distributions computed with Fred and measured with an array of ionization chambers behind an anthropomorphic phantom. The results of example treatment planning study on >100 patients demonstrated that Fred simulations in computed tomography enable an accurate prediction of dose distribution in patient and application of Fred as second patient quality assurance tool. Computation of a patient treatment in a CT using 104 protons per pencil beam took on average 2′30 min with a tracking rate of 2.9×105p+/s. Fred was successfully commissioned and validated against the clinical beam model, showing that it could potentially be used in clinical routine. Thanks to high computational performance due to GPU acceleration and an automated beam model implementation method, the application of Fred is now possible for research or quality assurance purposes in most of the proton facilities.

2020 ◽  
Vol 19 ◽  
pp. 153303382094581
Author(s):  
Du Tang ◽  
Zhen Yang ◽  
Xunzhang Dai ◽  
Ying Cao

Purpose: To evaluate the performance of Delta4DVH Anatomy in patient-specific intensity-modulated radiotherapy quality assurance. Materials and Methods: Dose comparisons were performed between Anatomy doses calculated with treatment plan dose measured modification and pencil beam algorithms, treatment planning system doses, film doses, and ion chamber measured doses in homogeneous and inhomogeneous geometries. The sensitivity of Anatomy doses to machine errors and output calibration errors was also investigated. Results: For a Volumetric Modulated Arc Therapy (VMAT) plan evaluated on the Delta4 geometry, the conventional gamma passing rate was 99.6%. For a water-equivalent slab geometry, good agreements were found between dose profiles in film, treatment planning system, and Anatomy treatment plan dose measured modification and pencil beam calculations. Gamma passing rate for Anatomy treatment plan dose measured modification and pencil beam doses versus treatment planning system doses was 100%. However, gamma passing rate dropped to 97.2% and 96% for treatment plan dose measured modification and pencil beam calculations in inhomogeneous head & neck phantom, respectively. For the 10 patients’ quality assurance plans, good agreements were found between ion chamber measured doses and the planned ones (deviation: 0.09% ± 1.17%). The averaged gamma passing rate for conventional and Anatomy treatment plan dose measured modification and pencil beam gamma analyses in Delta4 geometry was 99.6% ± 0.89%, 98.54% ± 1.60%, and 98.95% ± 1.27%, respectively, higher than averaged gamma passing rate of 97.75% ± 1.23% and 93.04% ± 2.69% for treatment plan dose measured modification and pencil beam in patients’ geometries, respectively. Anatomy treatment plan dose measured modification dose profiles agreed well with those in treatment planning system for both Delta4 and patients’ geometries, while pencil beam doses demonstrated substantial disagreement in patients’ geometries when compared to treatment planning system doses. Both treatment planning system doses are sensitive to multileaf collimator and monitor unit (MU) errors for high and medium dose metrics but not sensitive to the gantry and collimator rotation error smaller than 3°. Conclusions: The new Delta4DVH Anatomy with treatment plan dose measured modification algorithm is a useful tool for the anatomy-based patient-specific quality assurance. Cautions should be taken when using pencil beam algorithm due to its limitations in handling heterogeneity and in high-dose gradient regions.


2017 ◽  
Vol 18 (2) ◽  
pp. 44-49 ◽  
Author(s):  
Liyong Lin ◽  
Sheng Huang ◽  
Minglei Kang ◽  
Petri Hiltunen ◽  
Reynald Vanderstraeten ◽  
...  

2018 ◽  
Vol 52 ◽  
pp. 184
Author(s):  
Magdalena Garbacz ◽  
Jan Gajewski ◽  
Nils Krah ◽  
Angelo Schiavi ◽  
Agata Skrzypek ◽  
...  

2018 ◽  
Vol 63 (17) ◽  
pp. 175001 ◽  
Author(s):  
C Winterhalter ◽  
E Fura ◽  
Y Tian ◽  
A Aitkenhead ◽  
A Bolsi ◽  
...  

2006 ◽  
Vol 33 (6Part23) ◽  
pp. 2293-2293
Author(s):  
L Tillikainen ◽  
S Siljamäki

Sign in / Sign up

Export Citation Format

Share Document