beam scanning
Recently Published Documents


TOTAL DOCUMENTS

1930
(FIVE YEARS 560)

H-INDEX

44
(FIVE YEARS 8)

2022 ◽  
Vol 151 ◽  
pp. 106916
Author(s):  
Mitanjali ◽  
Vaibhav Kumar Arghode
Keyword(s):  

Author(s):  
Yan-He Lv ◽  
Ren Wang ◽  
Chang-Hai Hu ◽  
Xiao Ding ◽  
Bing-Zhong Wang

2021 ◽  
Vol 12 (1) ◽  
pp. 328
Author(s):  
Linh T. Tran ◽  
David Bolst ◽  
Benjamin James ◽  
Vladimir Pan ◽  
James Vohradsky ◽  
...  

The Centre for Medical Radiation Physics introduced the concept of Silicon On Insulator (SOI) microdosimeters with 3-Dimensional (3D) cylindrical sensitive volumes (SVs) mimicking the dimensions of cells in an array. Several designs of high-definition 3D SVs fabricated using 3D MEMS technology were implemented. 3D SVs were fabricated in different sizes and configurations with diameters between 18 and 30 µm, thicknesses of 2–50 µm and at a pitch of 50 µm in matrices with volumes of 20 × 20 and 50 × 50. SVs were segmented into sub-arrays to reduce capacitance and avoid pile up in high-dose rate pencil beam scanning applications. Detailed TCAD simulations and charge collection studies in individual SVs have been performed. The microdosimetry probe (MicroPlus) is composed of the silicon microdosimeter and low-noise front–end readout electronics housed in a PMMA waterproof sheath that allows measurements of lineal energies as low as 0.4 keV/µm in water or PMMA. Microdosimetric quantities measured with SOI microdosimeters and the MicroPlus probe were used to evaluate the relative biological effectiveness (RBE) of heavy ions and protons delivered by pencil-beam scanning and passive scattering systems in different particle therapy centres. The 3D detectors and MicroPlus probe developed for microdosimetry have the potential to provide confidence in the delivery of RBE optimized particle therapy when introduced into routine clinical practice.


Author(s):  
Houtong Qiu ◽  
Xue-Xia Yang ◽  
Meiling Li ◽  
Zixuan Yi

Abstract Based on a substrate integrated lens (SIL), a compact line source generator (LSG) for feeding continuous transverse stub (CTS) arrays with linear-polarized (LP) beam scanning and dual-polarized (DP) operations is presented in this paper. The SIL consists of metamaterial cells with different sizes being arranged as concentric annulus and is printed on the center surface of two substrate layers. The SIL can convert the cylindrical wave generated by the feed probe of SIW-horn to the planar wave for feeding the CTS array. This rotationally symmetric SIL can be used conveniently to design LSG for feeding CTS arrays with the continuous beam scanning and DP operations, which has been verified by the fabrications and measurements. By simply rotating the SIW-horn along the edge of SIL, the 10-element LP-CTS array obtains a measured beam scanning range of ±35° with the highest gain of 20.6 dBi. By setting two orthogonal SIW-horns at the edge of the proposed SIL, the nine-element DP-CTS array with orthogonal radiation stubs is excited. The DP array obtains the gain of 20.3 dBi at the center frequency with the isolation of 28 dB and the cross-polarization level <−25 dB.


Sign in / Sign up

Export Citation Format

Share Document