scholarly journals Efficient Targeted Influence Maximization Based on Multidimensional Selection in Social Networks

2021 ◽  
Vol 9 ◽  
Author(s):  
Dong Jing ◽  
Ting Liu

The influence maximization problem over social networks has become a popular research problem, since it has many important practical applications such as online advertising, virtual market, and so on. General influence maximization problem is defined over the whole network, whose intuitive aim is to find a seed node set with size at most k in order to affect as many as nodes in the network. However, in real applications, it is commonly required that only special nodes (target) in the network are expected to be influenced, which can use the same cost of placing seed nodes but influence more targeted nodes really needed. Some research efforts have provided solutions for the corresponding targeted influence maximization problem (TIM for short). However, there are two main drawbacks of previous works focusing on the TIM problem. First, some works focusing on the case the targets are given arbitrarily make it hard to achieve efficient performance guarantee required by real applications. Second, some previous works studying the TIM problems by specifying the target set in a probabilistic way is not proper for the case that only exact target set is required. In this paper, we study the Multidimensional Selection based Targeted Influence Maximization problem, MSTIM for short. First, the formal definition of the problem is given based on a brief and expressive fragment of general multi-dimensional queries. Then, a formal theoretical analysis about the computational hardness of the MSTIM problem shows that even for a very simple case that the target set specified is 1 larger than the seed node set, the MSTIM problem is still NP-hard. Then, the basic framework of RIS (short for Reverse Influence Sampling) is extended and shown to have a 1 − 1/e − ϵ approximation ratio when a sampling size is satisfied. To satisfy the efficiency requirements, an index-based method for the MSTIM problem is proposed, which utilizes the ideas of reusing previous results, exploits the covering relationship between queries and achieves an efficient solution for MSTIM. Finally, the experimental results on real datasets show that the proposed method is indeed rather efficient.

Computing ◽  
2021 ◽  
Author(s):  
Zahra Aghaee ◽  
Mohammad Mahdi Ghasemi ◽  
Hamid Ahmadi Beni ◽  
Asgarali Bouyer ◽  
Afsaneh Fatemi

2019 ◽  
Vol 11 (4) ◽  
pp. 95
Author(s):  
Wang ◽  
Zhu ◽  
Liu ◽  
Wang

Social networks have attracted a lot of attention as novel information or advertisement diffusion media for viral marketing. Influence maximization describes the problem of finding a small subset of seed nodes in a social network that could maximize the spread of influence. A lot of algorithms have been proposed to solve this problem. Recently, in order to achieve more realistic viral marketing scenarios, some constrained versions of influence maximization, which consider time constraints, budget constraints and so on, have been proposed. However, none of them considers the memory effect and the social reinforcement effect, which are ubiquitous properties of social networks. In this paper, we define a new constrained version of the influence maximization problem that captures the social reinforcement and memory effects. We first propose a novel propagation model to capture the dynamics of the memory and social reinforcement effects. Then, we modify two baseline algorithms and design a new algorithm to solve the problem under the model. Experiments show that our algorithm achieves the best performance with relatively low time complexity. We also demonstrate that the new version captures some important properties of viral marketing in social networks, such as such as social reinforcements, and could explain some phenomena that cannot be explained by existing influence maximization problem definitions.


2020 ◽  
Author(s):  
Paolo Scarabaggio ◽  
Raffaele Carli ◽  
Mariagrazia Dotoli

The main characteristic of social networks is their ability to quickly spread information between a large group of people. This phenomenon is generated by the social influence that individuals induce on each other.<br>The widespread use of online social networks (e.g., Facebook) increases researchers' interest in how influence propagates through these networks. One of the most important research issues in this field is the so-called influence maximization problem, which essentially consists in selecting the most influential users (i.e., those who are able to maximize the spread of influence through the social network).<br>Due to its practical importance in various applications (e.g., viral marketing, target advertisement, personalized recommendation), such a problem has been studied in several variants. Different solution methodologies have been proposed. Nevertheless, the current open challenge in the resolution of the influence maximization problem still concerns achieving a good trade-off between accuracy and computational time. <br>In this context, based on the well-known independent cascade and the linear threshold models of social networks, we propose a novel low-complexity and highly accurate algorithm for selecting an initial group of nodes to maximize the spread of influence in large-scale networks. In particular, the key idea consists in iteratively removing the overlap of influence spread induced by different seed nodes. Application to several numerical experiments based on real datasets proves that the proposed algorithm effectively finds practical near-optimal solutions of the addressed influence maximization problem in a computationally efficient fashion. Finally, comparison with the best performing state of the art algorithms demonstrates that in large scale scenarios, the proposed approach shows higher performance in terms of influence spread and running time.


Author(s):  
Esmaeil Bagheri ◽  
Gholamhossein Dastghaibyfard ◽  
Ali Hamzeh

Influence maximization algorithms try to select a set of individuals in social networks that are more influential. The Influence maximization problem is important in marketing and many researchers has researched on it and proposed new algorithms. All proposed algorithms are not scalable and are very time consuming for very large social networks generally. In this paper, a fast and scalable influence maximization algorithm called FSIM is proposed based on community detection. FSIM algorithm decreases number of nodes that must be examined without loss of the operations quality therefore it can find seeds quickly. FSIM can maximize influence in large social networks. Experimental results show FSIM is faster and more scalable than existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document