reinforcement effect
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 123)

H-INDEX

31
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 542
Author(s):  
Sujjaid Khan ◽  
Longbang Qing ◽  
Iftikhar Ahmad ◽  
Ru Mu ◽  
Mengdi Bi

Aligning steel fibers is an effective way to improve the mechanical properties of steel fiber cementitious composites (SFRC). In this study, the magnetic field method was used to prepare the aligned hooked-end steel fiber cementitious composites (ASFRC) and the fracture behavior was investigated. In order to achieve the alignment of steel fibers, the key parameters including the rheology of the mixture and magnetic induction of electromagnetic field were theoretically analyzed. The results showed that, compared with SFRC, the cracking load and the ultimate load of ASFRC were increased about 24–55% and 51–86%, respectively, depending on the fiber addition content. In addition, the flexural tensile strength and residual flexural strength of ASFRC were found to increase up to 105% and 100%, respectively. The orientation of steel fibers also has a significant effect on energy consumption. The fracture energy of ASFRC was 56–70% greater than SFRC and the reinforcement effect of hooked-end steel fiber was higher than straight steel fiber. The fibers in the fracture surface showed that not only was the number of fibers of ASFRC higher than that of SFRC, but also the orientation efficiency factor of ASFRC was superior to SFRC, which explains the improvement of fracture behavior of ASFRC.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012053
Author(s):  
Bowen Xu ◽  
Shijie Liu ◽  
Jing Wang

Abstract The analysis of slope stability involves complex geological and topographical boundary conditions, nonlinear behavior of material stress-strain, coupling analysis of initial in-situ stress, water pressure and seismic load, etc., and in most cases, analytical solutions cannot be obtained. Under the background of the continuous development of computer and calculation method, the numerical analysis method represented by finite element has been gradually popularized and applied in geotechnical engineering in 1970s, and has developed into a powerful calculation and analysis tool. Among them, the finite element strength reduction method and the discrete element method are the two most widely used slope numerical analysis methods. In this paper, two typical cases, Ankang reservoir landslide and Wenma Highway slope, are simulated by the two methods. Taking Ankang reservoir landslide as the research object, this paper would use MIDAS / GTS finite element analysis software, and two-dimensional finite element numerical simulation would be carried out to study the influence of reservoir water level periodic fluctuation on the reinforcement effect of anti-slide pile. Under the condition of water saturation and water loss cycle, main material of landslide body and landslide belt, namely the strong weathered phyllite, displays obvious deterioration phenomenon, showing the trend of rapid decline first and then slow decline; after the anti-slide pile is set in the middle and front of the slope, the stability of it has been greatly improved, but with the increasement of the number of water level changes, the reinforcement effect of the anti-slide pile continues to weaken, and the weakening speed is fast at first, and then slows down. Taking the bedding slope of Wenma Highway as the research object, this pater would adopt UDEC discrete element software to simulate the deformation and failure process of the slope after excavated, and analysize the failure mechanism at the same time. The failure process of bedding slope can be divided into four stages: the formation of tension cracks caused by excavation, the expansion of cracks and the formation of deformation body, the sliding of deformation body and the accumulation of damaged rock mass at the foot of slope. Tensile failure is the main failure mode, and shear failure occurs locally. The failure of bedding slope starts from the foot of slope, which is traction sliding.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4448
Author(s):  
Janez Slapnik ◽  
Thomas Lucyshyn ◽  
Gerald Pinter

Engineering polymers reinforced with renewable fibres (RF) are an attractive class of materials, due to their excellent mechanical performance and low environmental impact. However, the successful preparation of such composites has proven to be challenging due to the low thermal stability of RF. The aim of the present study was to investigate how different RF behaves under increased processing temperatures and correlate the thermal properties of the fibres to the mechanical properties of composites. For this purpose, hemp, flax and Lyocell fibres were compounded into polypropylene (PP) using a co-rotating twin screw extruder and test specimens were injection moulded at temperatures ranging from 180 °C to 260 °C, with 20 K steps. The decomposition behaviour of fibres was characterised using non-isothermal and isothermal simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). The prepared composites were investigated using optical microscopy (OM), colorimetry, tensile test, Charpy impact test, dynamic mechanical analysis (DMA) and melt flow rate (MFR). Composites exhibited a decrease in mechanical performance at processing temperatures above 200 °C, with a steep decrease observed at 240 °C. Lyocell fibres exhibited the best reinforcement effect, especially at elevated processing temperatures, followed by flax and hemp fibres. It was found that the retention of the fibre reinforcement effect at elevated temperatures can be well predicted using isothermal TGA measurements.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4261
Author(s):  
Ru Fu ◽  
Wei Li

Mixing soil with waste tire rubber granules or fibres is a practical and promising solution to the problem of global scrap tire pollution. Before successful applications, the mechanical behaviour of the soil–rubber mixture must be thoroughly investigated. Comprehensive laboratory studies (compaction, permeability, oedometer and triaxial tests) were conducted on the completely decomposed granite (CDG)–rubber mixtures, considering the effects of rubber type (rubber granules GR1 and rubber fibre FR2) and rubber content (0–30%). Results show that, for the CDG–rubber mixture, as the rubber content increases, the compaction curves become more rubber-like with less obvious optimum moisture content. The effect on permeability becomes clearer only when the rubber content is greater than 30%. The shape effect of rubber particles in compression is minimal. In triaxial shearing, the inclusion of rubber particles tends to reduce the stiffness of the mixtures. After adding GR1, the peak stress decreases with the increasing rubber content due to the participation of soft rubber particles in the force transmission, while the FR2 results in higher peak stress especially at higher rubber contents because of the reinforcement effect. For the CDG–GR1 mixture, the friction angle at the critical state (φ’cs) decreases with the increasing rubber content, mainly due to the lower inter-particle friction of the CDG–rubber interface compared to the pure CDG interface, while for the CDG–FR2 mixture, the φ’cs increases with the increasing rubber content, again mainly due to the reinforcement effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Daqing Wang ◽  
Dong Wei ◽  
Guoyi Lin ◽  
Jiannan Zheng ◽  
Zhiting Tang ◽  
...  

Combined vacuum and surcharge preloading has gradually been widely used because of its advantages of low cost, green environmental protection, and good treatment effect. The conventional prefabricated vertical drain presents obvious defects in vacuum preloading treatment, such as obvious silting, serious bending of the drainage board, large attenuation of vacuum degree of drainage board along the depth, long construction period, and so on, which affect the final reinforcement effect. In this paper, the MIDAS finite element simulation of combined vacuum and surcharge preloading of prefabricated vertical drains (PVDs) and prefabricated horizontal drains (PHDs) is established through the comparative experiment of the engineering field. The comparative experimental study is carried out from the aspects of the vertical settlement, horizontal displacement, and pore water pressure. The results show that under combined vacuum and surcharge preloading, the consolidation effect of soft soil with PHDs is better than that with PVDs. When PHDs are used, the vertical settlement increases by 7.2% compared with PVDs; the horizontal displacement is larger; and the pore water pressure dissipates faster. This is because when the PHDs are adopted, the consolidation direction of the soil is consistent with the direction of the vacuum suction, which is mainly caused by vertical settlement. With the consolidation, the spacing between PHDs is gradually shortened, and the drainage distance is reduced, which can effectively reduce the consolidation time and improve the reinforcement effect of the soil. In addition, the PHDs can move downward uniformly with the soil during the consolidation process and have almost no bending deformation, which makes the vacuum transfer more uniform and effective.


2021 ◽  
Vol 36 (5) ◽  
pp. 620-629
Author(s):  
L.-Y. Yu ◽  
B.-C. Xue ◽  
M.-M. Qian ◽  
Y.-X. Li ◽  
Z.-X. Chen ◽  
...  

Abstract Biochar has been exploited as a substitution of carbon black in the rubber industry and various biochars exhibit diverse reinforcing abilities due to the different compositions. This work aims at studying the effect of silica on the modification process and reinforcing performance through the comparison of three biochars with different contents of silica, pyrolytic rice husks (PRH, 34 wt%), pyrolytic bamboos (PB, 7 wt%) and pyrolytic corn cobs (PC, 0.4 wt%). The results reveal that PRH requires higher rotational speed (300 min–1) than PB (200 min–1) and PC (200 min–1) to achieve similar particle sizes during the ball milling process because of the aggregations of higher silica content. Meanwhile, silica-rich pyrolytic biomass exhibits enhanced reinforcement on mechanical properties and thermal stability of rubber, and the elongation at break of vulcanizates continues to improve with increasing silica contents. Combined with the energy consumption and reinforcement, biochar containing a little amount of silica is more suitable to be widely used as bio-filler in rubber industry. This work should serve as a valuable reference to select appropriate biochar for the production of bio-fillers with high reinforcement.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wan-li Xie ◽  
Qianyi Guo ◽  
Nelson N.S. Chou ◽  
Rongsen Zhu ◽  
Maosheng Zhang

To explore the reinforcement effects of different reinforcement methods, kraft paper was used as reinforcement material, and shear tests were carried out in sand to study the reinforcement effects of kraft paper perpendicular and parallel to the shear plane. The test results show that the two reinforcement methods can effectively improve the strength of sand and the orthogonal reinforcement form is more superior. The existence of reinforced materials greatly improves the cohesion of sand, but does not significantly improve the internal friction angle. The width of reinforcement material has little effect on the reinforcement effect and shows different variation laws under different reinforcement forms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuke Wang ◽  
Musen Han ◽  
Xiaoying Lin ◽  
Dongbiao Li ◽  
Hongliang Yu ◽  
...  

Traditional reinforced concrete piles have high strength and low cost in slope engineering, but the slow forming and long maintenance period make it difficult to meet the needs of emergency and disaster relief tasks, such as landslides caused by rainfall. In this paper, the influence of a new type of polymer anti-slide pile on slope stability under rainfall conditions is studied. With the advantages of fast forming, high strength, simple construction technology, and small disturbance to slope, the new type of anti-slide pile can meet the requirements of emergency and disaster relief tasks. The influence of different rainfall duration, rainfall form, location, and spacing of pile laying on the stability of rainfall slope is explored with fluid-solid coupling analysis. The results show that the slope stability gradually deteriorates with the increase of the peak duration of rainfall intensity. Without rainfall conditions, the reinforcement effect is optimal when the position of pile cloth is 1/2–3/4 L away from the foot of the slope (L is the horizontal length of the slope); with rainfall conditions, when the position of pile cloth is 1/4–1/2 L away from the foot of the slope, the reinforcement effect is optimal. Without rainfall conditions, the reduction of pile spacing can improve the reinforcement effect; with rainfall conditions, the reduction of pile spacing will affect the flow and discharge of seepage rainwater and reduce the reinforcement effect.


Sign in / Sign up

Export Citation Format

Share Document