scholarly journals Contributions of cortical feedback to sensory processing in primary visual cortex

2014 ◽  
Vol 5 ◽  
Author(s):  
Lucy S. Petro ◽  
Luca Vizioli ◽  
Lars Muckli
2020 ◽  
Vol 124 (1) ◽  
pp. 245-258 ◽  
Author(s):  
Miaomiao Jin ◽  
Lindsey L. Glickfeld

Rapid adaptation dynamically alters sensory signals to account for recent experience. To understand how adaptation affects sensory processing and perception, we must determine how it impacts the diverse set of cortical and subcortical areas along the hierarchy of the mouse visual system. We find that rapid adaptation strongly impacts neurons in primary visual cortex, the higher visual areas, and the colliculus, consistent with its profound effects on behavior.


2019 ◽  
Vol 121 (5) ◽  
pp. 1938-1952 ◽  
Author(s):  
Jacob A. Westerberg ◽  
Michele A. Cox ◽  
Kacie Dougherty ◽  
Alexander Maier

Repetitive visual stimulation profoundly changes sensory processing in the primary visual cortex (V1). We show how the associated adaptive changes are linked to an altered flow of synaptic activation across the V1 laminar microcircuit. Using repeated visual stimulation, we recorded layer-specific responses in V1 of two fixating monkeys. We found that repetition-related spiking suppression was most pronounced outside granular V1 layers that receive the main retinogeniculate input. This repetition-related response suppression was robust to alternating stimuli between the eyes, in line with the notion that repetition-related adaptation is predominantly of cortical origin. Most importantly, current source density (CSD) analysis, which provides an estimate of local net depolarization, revealed that synaptic processing during repeated stimulation was most profoundly affected within supragranular layers, which harbor the bulk of cortico-cortical connections. Direct comparison of the temporal evolution of laminar CSD and spiking activity showed that stimulus repetition first affected supragranular synaptic currents, which translated into a reduction of stimulus-evoked spiking across layers. Together, these results suggest that repetition induces an altered state of intracortical processing that underpins visual adaptation. NEW & NOTEWORTHY Our survival depends on our brains rapidly adapting to ever changing environments. A well-studied form of adaptation occurs whenever we encounter the same or similar stimuli repeatedly. We show that this repetition-related adaptation is supported by systematic changes in the flow of sensory activation across the laminar cortical microcircuitry of primary visual cortex. These results demonstrate how adaptation impacts neuronal interactions across cortical circuits.


2018 ◽  
Vol 21 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Tiago Marques ◽  
Julia Nguyen ◽  
Gabriela Fioreze ◽  
Leopoldo Petreanu

10.1038/85170 ◽  
2001 ◽  
Vol 4 (3) ◽  
pp. 304-310 ◽  
Author(s):  
Hans Supèr ◽  
Henk Spekreijse ◽  
Victor A. F. Lamme

2016 ◽  
Author(s):  
Ovidiu Jurjut ◽  
Petya Georgieva ◽  
Laura Busse ◽  
Steffen Katzner

AbstractA fundamental property of visual cortex is to enhance the representation of those stimuli that are relevant for behavior, but it remains poorly understood how such enhanced representations arise during learning. Using classical conditioning in mice, we show that orientation discrimination is learned in a sequence of distinct behavioral stages, in which animals first rely on stimulus appearance before exploiting its orientation to guide behavior. After confirming that orientation discrimination under classical conditioning requires primary visual cortex (V1), we measured, during learning, response properties of V1 neurons. Learning improved neural discriminability, sharpened orientation tuning and led to higher contrast sensitivity. Remarkably, these learning-related improvements in the V1 representation were fully expressed before successful orientation discrimination was evident in the animals’ behavior. We propose that V1 plays a key role early in discrimination learning to enhance behaviorally relevant sensory information.


Sign in / Sign up

Export Citation Format

Share Document