scholarly journals Verification of an Accommodative Response for Depth Measurement of Floating Hologram Using a Holographic Optical Element

2020 ◽  
Vol 10 (19) ◽  
pp. 6788
Author(s):  
Leehwan Hwang ◽  
Sungjae Ha ◽  
Philippe Gentet ◽  
Jaehyun Lee ◽  
Soonchul Kwon ◽  
...  

Floating holograms using holographic optical element screens differ from existing systems because they can float 2D images in the air and provide a sense of depth. Until now, the verification of such displays has been conducted only on the system implementation, and only the diffraction efficiency and angle of view of the hologram have been verified. Although such displays can be directly observed with the human eye, the eye’s control ability has not been quantitatively verified. In this study, we verified that the focus of the observer coincided with the appropriate depth value determined with experiments. This was achieved by measuring the amount of control reaction from the perspective of the observer on the image of the floating hologram using a holographic optical element (HOE). An autorefractor was used, and we confirmed that an image with a sense of depth can be observed from the interaction of the observer’s focus and convergence on the 2D floating image using a HOE. Thus, the realization of content with a sense of depth of 2D projected images using a HOE in terms of human factors was quantitatively verified.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Pei-Jung Wu ◽  
Chih-Hao Chuang ◽  
Chien-Yu Chen ◽  
Jeng-Han Wu ◽  
Bor-Shyh Lin

This study proposes to apply the combination of two 90-degree prisms and a holographic optical element to an image-dividing element, divide an image into three through the virtual image projection system, and accurately project the images to 160 cm behind the windshield. In order to distinguish the left image, middle image, and right image at the horizontal direction, the 90-degree prism is first utilized for horizontally deflecting the light, a holographic optical element is then used for presenting the vertical deflection of the image, and finally, the images are horizontally arranged as a real image on the diffuser. An image-dividing element is eventually integrated to the virtual image projection system. Then, the divided images are made as a virtual image which is projected to 160 cm behind the windshield to combine with the street scene. The horizontal angle of view of an eyebox is increased from 2.51° to 7.22°, and the size of the eyebox is 31.68 cm × 12.48 cm, allowing a wide-view laser-based head-up display with the large-angle beam-splitting function being successfully designed. It would not affect the field of view on the road, and this system could reduce the space and be arranged easily in a vehicle. Therefore, this proposed system is suitable for the aftermarket.


2011 ◽  
Vol 8 (2) ◽  
pp. 429-434
Author(s):  
Baghdad Science Journal

In this work we fabrication holographic optical element diffraction grating thickness 40?m and mirror90?m by using dichromated gelatin,to perform that we have to use the Nd-yaG laser doubling frequency of wavelenght (532)nm and its powers of (80)mWatt.we have studyed the thickness and concentration dichromat effect in mirror reflaction ,effect of angle of reconstruction beam in band width and diffraction efficiency ,study effect gelatin hardener of the diffraction efficiency.


1994 ◽  
Author(s):  
Debesh Choudhury ◽  
Padmakar N. Puntambekar ◽  
A. K. Chakraborty

1996 ◽  
Author(s):  
Michael H. Metz ◽  
Zane A. Coleman ◽  
Nicholas J. Phillips ◽  
Carl Flatow

Sign in / Sign up

Export Citation Format

Share Document