scholarly journals A Cascaded Ensemble of Sparse-and-Dense Dictionaries for Vehicle Detection

2021 ◽  
Vol 11 (4) ◽  
pp. 1861
Author(s):  
Zihao Rong ◽  
Shaofan Wang ◽  
Dehui Kong ◽  
Baocai Yin

Vehicle detection as a special case of object detection has practical meaning but faces challenges, such as the difficulty of detecting vehicles of various orientations, the serious influence from occlusion, the clutter of background, etc. In addition, existing effective approaches, like deep-learning-based ones, demand a large amount of training time and data, which causes trouble for their application. In this work, we propose a dictionary-learning-based vehicle detection approach which explicitly addresses these problems. Specifically, an ensemble of sparse-and-dense dictionaries (ESDD) are learned through supervised low-rank decomposition; each pair of sparse-and-dense dictionaries (SDD) in the ensemble is trained to represent either a subcategory of vehicle (corresponding to certain orientation range or occlusion level) or a subcategory of background (corresponding to a cluster of background patterns) and only gives good reconstructions to samples of the corresponding subcategory, making the ESDD capable of classifying vehicles from background even though they exhibit various appearances. We further organize ESDD into a two-level cascade (CESDD) to perform coarse-to-fine two-stage classification for better performance and computation reduction. The CESDD is then coupled with a downstream AdaBoost process to generate robust classifications. The proposed CESDD model is used as a window classifier in a sliding-window scan process over image pyramids to produce multi-scale detections, and an adapted mean-shift-like non-maximum suppression process is adopted to remove duplicate detections. Our CESDD vehicle detection approach is evaluated on KITTI dataset and compared with other strong counterparts; the experimental results exhibit the effectiveness of CESDD-based classification and detection, and the training of CESDD only demands small amount of time and data.

2020 ◽  
Vol 15 ◽  
pp. 155892502090302 ◽  
Author(s):  
Zhoufeng Liu ◽  
Baorui Wang ◽  
Chunlei Li ◽  
Miao Yu ◽  
Shumin Ding

Fabric defect detection plays an important role in controlling the quality of textile production. In this article, a novel fabric defect detection algorithm is proposed based on a multi-scale convolutional neural network and low-rank decomposition model. First, multi-scale convolutional neural network, which can extract the multi-scale deep feature of the image using multiple nonlinear transformations, is adopted to improve the characterization ability of fabric images with complex textures. The effective feature extraction makes the background lie in a low-rank subspace, and a sparse defect deviates from the low-rank subspace. Then, the low-rank decomposition model is constructed to decompose the feature matrix into the low-rank part (background) and the sparse part (salient defect). Finally, the saliency maps generated by the sparse matrix are segmented based on an improved optimal threshold to locate the fabric defect regions. Experimental results indicate that the feature extracted by the multi-scale convolutional neural network is more suitable for characterizing the fabric texture than the traditional hand-crafted feature extraction methods, such as histogram of oriented gradient, local binary pattern, and Gabor. The adopted low-rank decomposition model can effectively separate the defects from the background. Moreover, the proposed method is superior to state-of-the-art methods in terms of its adaptability and detection efficiency.


2018 ◽  
Vol 20 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
Jiandong Tian ◽  
Zhi Han ◽  
Weihong Ren ◽  
Xiai Chen ◽  
Yandong Tang

2017 ◽  
Vol 19 (5) ◽  
pp. 969-983 ◽  
Author(s):  
Hengyou Wang ◽  
Yigang Cen ◽  
Zhihai He ◽  
Ruizhen Zhao ◽  
Yi Cen ◽  
...  

Author(s):  
Chen Chen ◽  
Baochang Zhang ◽  
Alessio Del Bue ◽  
Vittorio Murino

Sign in / Sign up

Export Citation Format

Share Document