image pyramids
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4532
Author(s):  
Yubin Miao ◽  
Leilei Huang ◽  
Shu Zhang

Phenotypic characteristics of fruit particles, such as projection area, can reflect the growth status and physiological changes of grapes. However, complex backgrounds and overlaps always constrain accurate grape border recognition and detection of fruit particles. Therefore, this paper proposes a two-step phenotypic parameter measurement to calculate areas of overlapped grape particles. These two steps contain particle edge detection and contour fitting. For particle edge detection, an improved HED network is introduced. It makes full use of outputs of each convolutional layer, introduces Dice coefficients to original weighted cross-entropy loss function, and applies image pyramids to achieve multi-scale image edge detection. For contour fitting, an iterative least squares ellipse fitting and region growth algorithm is proposed to calculate the area of grapes. Experiments showed that in the edge detection step, compared with current prevalent methods including Canny, HED, and DeepEdge, the improved HED was able to extract the edges of detected fruit particles more clearly, accurately, and efficiently. It could also detect overlapping grape contours more completely. In the shape-fitting step, our method achieved an average error of 1.5% in grape area estimation. Therefore, this study provides convenient means and measures for extraction of grape phenotype characteristics and the grape growth law.


2021 ◽  
Vol 11 (4) ◽  
pp. 1861
Author(s):  
Zihao Rong ◽  
Shaofan Wang ◽  
Dehui Kong ◽  
Baocai Yin

Vehicle detection as a special case of object detection has practical meaning but faces challenges, such as the difficulty of detecting vehicles of various orientations, the serious influence from occlusion, the clutter of background, etc. In addition, existing effective approaches, like deep-learning-based ones, demand a large amount of training time and data, which causes trouble for their application. In this work, we propose a dictionary-learning-based vehicle detection approach which explicitly addresses these problems. Specifically, an ensemble of sparse-and-dense dictionaries (ESDD) are learned through supervised low-rank decomposition; each pair of sparse-and-dense dictionaries (SDD) in the ensemble is trained to represent either a subcategory of vehicle (corresponding to certain orientation range or occlusion level) or a subcategory of background (corresponding to a cluster of background patterns) and only gives good reconstructions to samples of the corresponding subcategory, making the ESDD capable of classifying vehicles from background even though they exhibit various appearances. We further organize ESDD into a two-level cascade (CESDD) to perform coarse-to-fine two-stage classification for better performance and computation reduction. The CESDD is then coupled with a downstream AdaBoost process to generate robust classifications. The proposed CESDD model is used as a window classifier in a sliding-window scan process over image pyramids to produce multi-scale detections, and an adapted mean-shift-like non-maximum suppression process is adopted to remove duplicate detections. Our CESDD vehicle detection approach is evaluated on KITTI dataset and compared with other strong counterparts; the experimental results exhibit the effectiveness of CESDD-based classification and detection, and the training of CESDD only demands small amount of time and data.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Md. Salman Bombaywala ◽  
Chirag Paunwala

Image inpainting is the art of manipulating an image so that it is visually unrecognizable way. A considerable amount of research has been done in this area over the last few years. However, the state of art techniques does suffer from computational complexities and plausible results. This paper proposes a multi-level image pyramid-based image inpainting algorithm. The image inpainting algorithm starts with the coarsest level of the image pyramid and overpainting information is transferred to the subsequent levels until the bottom level gets inpainted. The search strategy used in the algorithm is based on hashing the coherent information in an image which makes the search fast and accurate. Also, the search space is constrained based on the propagated information thereby reducing the complexity of the algorithm. Compared to other inpainting methods; the proposed algorithm inpaints the target region with better plausibility and human vision conformation. Experimental results show that the proposed algorithm achieves better results as compared to other inpainting techniques.


Author(s):  
Bharat Singh ◽  
Mahyar Najibi ◽  
Abhishek Sharma ◽  
Larry Steven Davis

2020 ◽  
Vol 39 (6) ◽  
pp. 8043-8055
Author(s):  
Lihui Chen ◽  
Rongzhu Zhang ◽  
Awais Ahmad ◽  
Gwanggil Jeon ◽  
Xiaomin Yang

Data cognition plays an important role in cognitive computing. Cognition of low-resolution (LR) image is a long-stand problem because LR images have insufficient information about objects. For better cognition of LR images, a multi-resolution residual network (MRRN) is proposed to improve image resolution in this paper for cognitive computing systems. In MRRN, a multi-resolution feature learning (MRFL) strategy is introduced to achieve satisfying performance with low computational costs. Inspired by image pyramids, a feature pyramid is designed to implement multi-resolution feature learning in the building unit of the proposed MRRN. Specifically, multi-resolution residual units (MRRUs) are introduced as the building units of the proposed network, which consist of a feature pyramid decomposition stage and a feature reconstruction stage. To obtain informative features, transferred skip links (TSLs) are utilized to transfer fine-grain residual features in the pyramid decomposition stage to the reconstruction stage. The effectiveness of MRFL and TSL is demonstrated by ablation experiments. Also, the tests on standard benchmarks indicate the superiority of the proposed MRRN over other state-of-the-art methods.


2020 ◽  
Vol 36 (15) ◽  
pp. 4363-4365 ◽  
Author(s):  
Leslie Solorzano ◽  
Gabriele Partel ◽  
Carolina Wählby

Abstract Motivation Visual assessment of scanned tissue samples and associated molecular markers, such as gene expression, requires easy interactive inspection at multiple resolutions. This requires smart handling of image pyramids and efficient distribution of different types of data across several levels of detail. Results We present TissUUmaps, enabling fast visualization and exploration of millions of data points overlaying a tissue sample. TissUUmaps can be used both as a web service or locally in any computer, and regions of interest as well as local statistics can be extracted and shared among users. Availability and implementation TissUUmaps is available on github at github.com/wahlby-lab/TissUUmaps. Several demos and video tutorials are available at http://tissuumaps.research.it.uu.se/howto.html. Supplementary information Supplementary data are available at Bioinformatics online.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 583 ◽  
Author(s):  
Khang Nguyen ◽  
Nhut T. Huynh ◽  
Phat C. Nguyen ◽  
Khanh-Duy Nguyen ◽  
Nguyen D. Vo ◽  
...  

Unmanned aircraft systems or drones enable us to record or capture many scenes from the bird’s-eye view and they have been fast deployed to a wide range of practical domains, i.e., agriculture, aerial photography, fast delivery and surveillance. Object detection task is one of the core steps in understanding videos collected from the drones. However, this task is very challenging due to the unconstrained viewpoints and low resolution of captured videos. While deep-learning modern object detectors have recently achieved great success in general benchmarks, i.e., PASCAL-VOC and MS-COCO, the robustness of these detectors on aerial images captured by drones is not well studied. In this paper, we present an evaluation of state-of-the-art deep-learning detectors including Faster R-CNN (Faster Regional CNN), RFCN (Region-based Fully Convolutional Networks), SNIPER (Scale Normalization for Image Pyramids with Efficient Resampling), Single-Shot Detector (SSD), YOLO (You Only Look Once), RetinaNet, and CenterNet for the object detection in videos captured by drones. We conduct experiments on VisDrone2019 dataset which contains 96 videos with 39,988 annotated frames and provide insights into efficient object detectors for aerial images.


Author(s):  
Janos Toth ◽  
Tibor Peter Kapusi ◽  
Balazs Harangi ◽  
Henrietta Toman ◽  
Andras Hajdu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document