scholarly journals Health-Monitoring Methodology for High-Temperature Steam Pipes of Power Plants Using Real-Time Displacement Data

2021 ◽  
Vol 11 (5) ◽  
pp. 2256
Author(s):  
Woosung Choi ◽  
Jihoon Han

We developed a health-monitoring methodology for high-temperature steam pipes that estimated the life prediction of creep–fatigue interaction by directly measuring the displacement of hot parts. Three different methods (boiler code, design stress, and operating stress) were used to estimate the stress of the high-temperature pipe system. As a theoretical approach, the German boiler standard code calculates the stress according to the pipe shape, while design stress, which is also called allowable stress, was determined by a function of the operating temperature. The operating stress was immediately calculated using the surrogate model, with maximum displacement measured using the 3D displacement measurement system. To achieve the surrogate model, the stress was estimated by the pipe-stress analysis under the given displacements, and the surface-response model was developed to relate the stress and displacement. We showed that those methods are efficient methods to predict the stress and are applicable in health-monitoring methodology. Finally, the creep life and the low-cycle fatigue life were investigated using the Larson–Miller parameter equation, as well as the Smith, Hirschberg, and Manson equations. Our proposed monitoring system can be used to predict the fatigue and creep life of high-temperature steam pipes in real time, and we believe that the system can be applied to actual maintenance in thermal power plants.

2004 ◽  
Vol 261-263 ◽  
pp. 1115-1122 ◽  
Author(s):  
Yu Sik Kong ◽  
Han Ki Yoon ◽  
Yi Hyun Park ◽  
Seon Jin Kim

The high temperature creep behaviors of heat machine systems such as aircraft engines, boilers and turbines in power plants and nuclear reactor components have been considered as an important and needful fact. There are considerable research results available for the design of high temperature tube materials in power plants, based on uni-axial tension creep tests. However, few studies on the Initial Strain Method (ISM) capable of securing repair, maintenance, cost loss and life loss have been made. In this method, a long time prediction of high temperature creep characteristics can be dramatically reduced through a short time experiment. The purpose of present study is to investigate the high temperature creep life of 1Cr-0.5Mo steel using the Initial Strain Method. The creep test was performed at 500°C, 550°C and 600°C under a pure loading. In the prediction of creep life for 1Cr-0.5Mo steel, the equation of ISM was superior to those of LMP. Especially, the long time prediction of creep life was identified to improve the reliability.


2020 ◽  
Vol 194 ◽  
pp. 01034
Author(s):  
Haihua Luo ◽  
Qiang Shen ◽  
Yunfei Chen ◽  
Shien Sun ◽  
Junguang Lin ◽  
...  

In order to accept more electricity from renewable energy, cogeneration power plants are considering to reduce electricity production, which affects the heat supply. Here we present a molten salt heat storage system for coal-fired cogeneration power plants, which can supply high temperature steam to users and decouple the heat and electricity production. The first and second law-based analytical models for the cycle and a real device are built. Two water input methods are taken into account. The results show that the high and low temperatures in the two molten salt tanks influence the design of the components and the entropy generation distribution significantly. The pinch temperature difference in the discharge duration limits the lowest molten salt temperature. The device with real heat exchangers produces higher entropy generation and lower second law efficiency. Environmental water input requires more heat and entropy generation for the same steam supply. Recommendations are provided for practical designs.


Author(s):  
Y. Tanaka ◽  
R. Magoshi ◽  
S. Nishimoto ◽  
M. Setoyama ◽  
R. Yamamoto ◽  
...  

Global warming due to increased CO2 levels in the atmosphere and resource saving have been the focus of world attention in the past decades. Efforts to improve generating efficiency by increasing the turbine inlet steam temperature and pressure in large capacity fossil-fuel and combined-cycle power plants are being made together with efforts to improve the internal efficiency. Most of MHI’s modern steam turbines, including the combined cycle plants, have a 600°C class USC inlet steam conditions. 700°C class Advanced USC (A-USC) technology is one of the remarkable technologies being developed to reduce CO2 emissions, and one, which was chosen by Japan’s ‘Cool Earth - Innovative Energy Technology Program’, which was launched in 2008 to contribute to substantial reductions in CO2 emissions. Major Japanese manufacturers of boilers and turbines joined forces with research institutes to bring the project to reality. This paper illustrates the features and benefits of A-USC technologies for MHI’s 700°C class high temperature steam turbines, including cycle design, conceptual design (structure and alloy), and the development of candidate materials.


Author(s):  
Bo Yang ◽  
Yi-chang Huang ◽  
Xiao-ying Tang ◽  
Yu-hui Huang

Main steam pipelines work in the environment of high temperature and pressure steam and withstand double damage between oxidation and creep load for a long time. Creep-oxidation interrupt tests were used in high temperature steam conditions at different stress load to get P92 steel mechanochemical behavior date in the present study. Weight gain method was used to get the oxidation kinetics under different applied loading. Scanning electron microscopy (SEM) micro observation techniques was applied to obtain growth characteristic in the interaction between steam oxidation and creep loading.


Sign in / Sign up

Export Citation Format

Share Document