scholarly journals Effect of Shiga Toxin on Inhomogeneous Biological Membrane Structure Determined by Small-Angle Scattering

2021 ◽  
Vol 11 (15) ◽  
pp. 6965
Author(s):  
Shuyang Tu ◽  
Haijiao Zhang ◽  
Yawen Li ◽  
Yongchao Zhang ◽  
Qiang Tian ◽  
...  

Inhomogeneous structure occurring in biological membranes being rich in glycosphingolipids (GSL) has been proposed as an important phenomenon involved in the cellular endocytosis process. However, little is known about the correlation between the formation of microdomains and the GSL-dependent biogenesis for tubular endocytic pits occurred on the surface of the cellular membrane. In the present work, the interaction between the bacterial Shiga toxin from Escherichia coli (STxB) and its cellular receptor GSL globotriaosylceramide (Gb3) were studied using small unilamellar vesicle (SUV). The model membrane invagination induced by STxB was determined by the contrast variation small-angle neutron scattering (SANS) and the synchrotron radiation facility based small-angle X-ray scattering (SR-SAXS). The results revealed that Gb3 molecules provided the binding sites for STxB, inducing increased membrane fluctuation. The formation of protein–lipid complex (STxB-Gb3) apparently induced the thinning of model membrane with the thickness decreased from 3.10 nm to 2.50 nm. It is the first time to successfully characterize the mesoscopic change on membrane thickness upon GSL-dependent endocytic process using a small-angle scattering technique. Overall, this paper provided a practical method to quantify the inhomogeneous biological membrane structures, which is important to understand the cellular endocytosis process.

1993 ◽  
Vol 03 (C8) ◽  
pp. C8-393-C8-396
Author(s):  
T. P.M. BEELEN ◽  
W. H. DOKTER ◽  
H. F. VAN GARDEREN ◽  
R. A. VAN SANTEN ◽  
E. PANTOS

1987 ◽  
Vol 48 (C3) ◽  
pp. C3-365-C3-372 ◽  
Author(s):  
S. FUJIKAWA ◽  
M. FURUSAKA ◽  
M. SAKAUCHI ◽  
K. HIRANO

1979 ◽  
Vol 18 (17) ◽  
pp. 3018 ◽  
Author(s):  
Sverker Hård ◽  
Olle Nilsson

Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120304
Author(s):  
T. Vasilenko ◽  
A. Kirillov ◽  
A. Islamov ◽  
A. Doroshkevich

2009 ◽  
Vol 43 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Gerald J. Schneider ◽  
D. Göritz

A novel theory is presented which allows, for the first time, the analytical description of small-angle scattering experiments on anisotropic shaped clusters of nanoparticles. Experimentally, silica-filled rubber which is deformed is used as an example. The silica can be modelled by solid spheres which form clusters. The experiments demonstrate that the clusters become anisotropic as a result of the deformation whereas the spheres are not affected. A comparison of the newly derived model function and the experiments provides, for the first time, microscopic evidence of the inhomogeneous deformation of clusters in the rubbery matrix.


2017 ◽  
Vol 73 (9) ◽  
pp. 710-728 ◽  
Author(s):  
Jill Trewhella ◽  
Anthony P. Duff ◽  
Dominique Durand ◽  
Frank Gabel ◽  
J. Mitchell Guss ◽  
...  

In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Biomolecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field.


Sign in / Sign up

Export Citation Format

Share Document