scholarly journals Noise Measurement and Reduction in Mode-Locked Lasers: Fundamentals for Low-Noise Optical Frequency Combs

2021 ◽  
Vol 11 (16) ◽  
pp. 7650
Author(s):  
Haochen Tian ◽  
Youjian Song ◽  
Minglie Hu

After five decades of development, mode-locked lasers have become significant building blocks for many optical systems in scientific research, industry, and biomedicine. Advances in noise measurement and reduction are motivated for both shedding new light on the fundamentals of realizing ultra-low-noise optical frequency combs and their extension to potential applications for standards, metrology, clock comparison, and so on. In this review, the theoretical models of noise in mode-locked lasers are first described. Then, the recent techniques for timing jitter, carrier-envelope phase noise, and comb-line noise measurement and their stabilization are summarized. Finally, the potential of the discussed technology to be fulfilled in novel optical frequency combs, such as electro-optic (EO) modulated combs, microcombs, and quantum cascade laser (QCL) combs, is envisioned.

Nanophotonics ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 196-213 ◽  
Author(s):  
Stefan Droste ◽  
Gabriel Ycas ◽  
Brian R. Washburn ◽  
Ian Coddington ◽  
Nathan R. Newbury

AbstractOptical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.


Nanophotonics ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 214-230 ◽  
Author(s):  
Yanne K. Chembo

AbstractThe optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.


2016 ◽  
Vol 109 (18) ◽  
pp. 181102 ◽  
Author(s):  
V. Panapakkam ◽  
A. Anthur ◽  
V. Vujicic ◽  
Q. Gaimard ◽  
K. Merghem ◽  
...  

2015 ◽  
Vol 23 (19) ◽  
pp. 24342 ◽  
Author(s):  
N. Kuse ◽  
C.-C. Lee ◽  
J. Jiang ◽  
C. Mohr ◽  
T. R. Schibli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document