scholarly journals Optical Frequency Comb Generation based on Erbium Fiber Lasers

Nanophotonics ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 196-213 ◽  
Author(s):  
Stefan Droste ◽  
Gabriel Ycas ◽  
Brian R. Washburn ◽  
Ian Coddington ◽  
Nathan R. Newbury

AbstractOptical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

2012 ◽  
Vol 60 (4) ◽  
pp. 697-706 ◽  
Author(s):  
G. Soboń ◽  
K.M. Abramski

Abstract For the last decade a very attractive field of laser physics, namely the optical frequency comb technique, has been intensively developed. Fiber lasers play particular role in that area. The motivation of their development is obtaining broadband comb systems with well-defined and stable mods (comb teeth). This paper presents a basic overview devoted to the fiber-based optical frequency combs.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Florent Bessin ◽  
Auro M. Perego ◽  
Kestutis Staliunas ◽  
Sergei K. Turitsyn ◽  
Alexandre Kudlinski ◽  
...  

Abstract Optical frequency combs (OFCs), consisting of a set of phase-locked, equally spaced laser frequency lines, have enabled a great leap in precision spectroscopy and metrology since seminal works of Hänsch et al. Nowadays, OFCs are cornerstones of a wealth of further applications ranging from chemistry and biology to astrophysics and including molecular fingerprinting and light detection and ranging (LIDAR) systems, among others. Driven passive optical resonators constitute the ideal platform for OFC generation in terms of compactness and low energy footprint. We propose here a technique for the generation of OFCs with a tuneable repetition rate in externally driven optical resonators based on the gain-through-filtering process, a simple and elegant method, due to asymmetric spectral filtering on one side of the pump wave. We demonstrate a proof-of-concept experimental result in a fibre resonator, pioneering a new technique that does not require specific engineering of the resonator dispersion to generate frequency-agile OFCs.


Author(s):  
T.W Hänsch ◽  
J Alnis ◽  
P Fendel ◽  
M Fischer ◽  
C Gohle ◽  
...  

Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S–2S two-photon resonance has reached an accuracy of 1.4 parts in 10 14 , and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant α and the magnetic moment of the caesium nucleus μ Cs in units of the Bohr magneton μ B .


2016 ◽  
Vol 2 (4) ◽  
pp. e1501489 ◽  
Author(s):  
Shu-Wei Huang ◽  
Jinghui Yang ◽  
Mingbin Yu ◽  
Bart H. McGuyer ◽  
Dim-Lee Kwong ◽  
...  

Optical frequency combs—coherent light sources that connect optical frequencies with microwave oscillations—have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb’s two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of 3.6mHz/τ. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10−16, heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yali Zhang ◽  
Shuxu Liao ◽  
Guan Wang ◽  
Ke Yang ◽  
Zhiyao Zhang ◽  
...  

In this article, we propose and investigate a novel scheme to generate optical frequency combs (OFCs) by using a three-stage generator, which is based on optical injection–induced dynamics cascaded by subharmonic electro-optic modulation and the four-wave mixing (FWM) effect. A primary seed OFC is rooted from the nonlinear dynamics in the optically injected semiconductor laser, and its performance is improved using a two-stage booster based on subharmonic electro-optic modulation and the FWM effect. The comb spacing can be easily tuned by adjusting that of the primary seed OFC or through electro-optic modulation by the use of subharmonics with different orders. Moreover, it becomes stabilized because the phase relationship between the comb teeth can be fixed in the process of subharmonic electro-optic modulation. Its optical spectrum continues to be broadened in the following FWM process. Finally, robust OFCs with a comb spacing of 4 GHz and a comb teeth number of 23 and a comb spacing of 5 GHz and a comb teeth number of 21 are experimentally demonstrated.


2021 ◽  
Author(s):  
D. Michelle Bailey ◽  
Gang Zhao ◽  
Adam J. Fleisher

<p>Advances in optical technology have led to the commercialization and widespread use of broadband optical frequency combs for multiplexed measurements of trace-gas species. Increasingly available in the mid-infrared spectral region, these devices can be leveraged to interrogate the molecular fingerprint region where many fundamental rovibrational transitions occur. Here we present a cross-dispersed spectrometer employing a virtually imaged phased array etalon and ruled diffraction grating coupled with a difference frequency generation comb centered near 4.5 µm. The spectrometer achieves sub-GHz spectral resolution with a 30 cm<sup>-1</sup> instantaneous bandwidth. Laboratory results for nitrous oxide isotopic abundance retrieval will be presented. Challenges relating to characterizing the instrument lineshape function, constructing a frequency axis traceable to the comb, and accurate spectral modelling will be addressed and progress towards incorporating a more compact laser frequency comb source into the system will be discussed.</p>


2012 ◽  
Vol 523-524 ◽  
pp. 877-882 ◽  
Author(s):  
Taro Onoe ◽  
Satoru Takahashi ◽  
Kiyoshi Takamasu ◽  
Hirokazu Matsumoto

We develop a new method for high-resolution and contactless distance measurement based on self frequency beats of optical frequency combs. We use two optical frequency comb lasers with Rb-stabilized repetition frequencies for doing accurate distance measurement. The repetition frequencies of the optical frequency combs are different, thus parts of the high frequencies such as several gigahertz of self beats are beat-downed to several megahertz without an RF frequency oscillator. The phases of the beat signals of several megahertz frequencies are measured by a lock-in amplifier with a high resolution and high sensitivity. The new method is applied to distance measurement for objects which have rough-surface in the distance range of several-meters.


Sign in / Sign up

Export Citation Format

Share Document