scholarly journals A Latent Heat Storage System for Low-Temperature Applications: From Materials Selection to Prototype Performances

2021 ◽  
Vol 11 (21) ◽  
pp. 10350
Author(s):  
Didier Haillot ◽  
Yasmine Lalau ◽  
Erwin Franquet ◽  
Sacha Rigal ◽  
Frederic Jay ◽  
...  

The industrial sector is increasingly obliged to reduce its energy consumption and greenhouse gases emissions to contribute to the world organizations’ targets in energy transition. An energy efficiency solution lies in the development of thermal energy storage systems, which are notably lacking in the low-temperature range (50–85 °C), for applications such as district heating or low-temperature waste heat recovery. This work aims to bring a latent heat storage solution from material selection to prototype evaluation. The first part of this paper is dedicated to the characterization and aging of a phase change material selected from a screening of the literature (fatty acid mixture mainly composed by stearic and palmitic acid). Then, this material is encapsulated and tested in a prototype whose performances are evaluated under various operating conditions. Finally, a numerical model validated by the experimental results is used to explore the influence of a wider range of operating conditions, dimensioning choices, and material conductivity improvements.

1994 ◽  
Vol 116 (1) ◽  
pp. 79-86 ◽  
Author(s):  
S. Aceves-Saborio ◽  
H. Nakamura ◽  
G. M. Reistad

This paper presents an analysis of a class of latent heat storage systems (LHSS). The analysis is based on a lumped model (the basic model) that allows a broad class of LHSSs to be completely specified, with only two parameters and a set of operating temperatures, while still retaining the main thermodynamic aspects associated with its operation. Characterization of the performance in this manner permits the broad base application potential of such systems to be viewed. This modeling is in contrast to most studies to date, which employ many parameters to include details of specific systems, and therefore obscure, to a great extent, this broad-based application potential. The basic model is later modified in three ways to analyze operating conditions that either occur in practical units or are desirable for an improved operation of the units. The modifications include, first, the consideration of the LHSS as being formed by many independent phase-change material (PCM) capsules. Second, the possibility of having PCMs with different phase change temperatures filling the capsules. Third, the case when the PCM melts over a temperature range. The results indicate that the efficiency of the basic model represents a higher bound for the efficient operation of LHSSs with negligible sensible storage capacity, and a single PCM. Using multiple PCMs within a LHSS results in higher efficiencies. These efficiencies set higher bounds for efficiency of any sensible or latent heat storage system, and also represent the only possibility for reversible operation of LHSS.


Sign in / Sign up

Export Citation Format

Share Document