scholarly journals Demodulation of EM Telemetry Data Using Fuzzy Wavelet Neural Network with Logistic Response

2021 ◽  
Vol 11 (22) ◽  
pp. 10877
Author(s):  
Olalekan Fayemi ◽  
Qingyun Di ◽  
Qihui Zhen ◽  
Pengfei Liang

Data telemetry is a critical element of successful unconventional well drilling operations, involving the transmission of information about the well-surrounding geology to the surface in real-time to serve as the basis for geosteering and well planning. However, the data extraction and code recovery (demodulation) process can be a complicated system due to the non-linear and time-varying characteristics of high amplitude surface noise. In this work, a novel model fuzzy wavelet neural network (FWNN) that combines the advantages of the sigmoidal logistic function, fuzzy logic, a neural network, and wavelet transform was established for the prediction of the transmitted signal code from borehole to surface with effluent quality. Moreover, the complete workflow involved the pre-processing of the dataset via an adaptive processing technique before training the network and a logistic response algorithm for acquiring the optimal parameters for the prediction of signal codes. A data reduction and subtractive scheme are employed as a pre-processing technique to better characterize the signals as eight attributes and, ultimately, reduce the computation cost. Furthermore, the frequency-time characteristics of the predicted signal are controlled by selecting an appropriate number of wavelet bases “N” and the pre-selected range for pij3 to be used prior to the training of the FWNN system. The results, leading to the prediction of the BPSK characteristics, indicate that the pre-selection of the N value and pij3 range provides a significantly accurate prediction. We validate its prediction on both synthetic and pseudo-synthetic datasets. The results indicated that the fuzzy wavelet neural network with logistic response had a high operation speed and good quality prediction, and the correspondingly trained model was more advantageous than the traditional backward propagation network in prediction accuracy. The proposed model can be used for analyzing signals with a signal-to-noise ratio lower than 1 dB effectively, which plays an important role in the electromagnetic telemetry system.

2013 ◽  
Vol 23 (05) ◽  
pp. 1350024 ◽  
Author(s):  
VASSILIS S. KODOGIANNIS ◽  
MAHDI AMINA ◽  
ILIAS PETROUNIAS

Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi–Sugeno–Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.


2015 ◽  
Vol 28 (1) ◽  
pp. 225-235 ◽  
Author(s):  
Leandro L.S. Linhares ◽  
José M. Araújo Jr. ◽  
Fábio M.U. Araújo ◽  
Takashi Yoneyama

Sign in / Sign up

Export Citation Format

Share Document