scholarly journals The South Atlantic–South Indian Ocean Pattern: a Zonally Oriented Teleconnection along the Southern Hemisphere Westerly Jet in Austral Summer

Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 259 ◽  
Author(s):  
Zhongda Lin

Extratropical teleconnections significantly affect the climate in subtropical and mid-latitude regions. Understanding the variability of atmospheric teleconnection in the Southern Hemisphere, however, is still limited in contrast with the well-documented counterpart in the Northern Hemisphere. This study investigates the interannual variability of mid-latitude circulation in the Southern Hemisphere in austral summer based on the ERA-Interim reanalysis dataset during 1980–2016. A stationary mid-latitude teleconnection is revealed along the strong Southern Hemisphere westerly jet over the South Atlantic and South Indian Ocean (SAIO). The zonally oriented SAIO pattern represents the first EOF mode of interannual variability of meridional winds at 200 hPa over the region, with a vertical barotropic structure and a zonal wavenumber of 4. It significantly modulates interannual climate variations in the subtropical Southern Hemisphere in austral summer, especially the opposite change in rainfall and surface air temperature between Northwest and Southeast Australia. The SAIO pattern can be efficiently triggered by divergences over mid-latitude South America and the southwest South Atlantic, near the entrance of the westerly jet, which is probably related to the zonal shift of the South Atlantic Convergence Zone. The triggered wave train is then trapped within the Southern Hemisphere westerly jet waveguide and propagates eastward until it diverts northeastward towards Australia at the jet exit, in addition to portion of which curving equatorward at approximately 50° E towards the southwest Indian Ocean.

2021 ◽  
Vol 51 (5) ◽  
pp. 1595-1609
Author(s):  
Motoki Nagura ◽  
Michael J. McPhaden

AbstractThis study examines interannual variability in sea surface height (SSH) at southern midlatitudes of the Indian Ocean (10°–35°S). Our focus is on the relative role of local wind forcing and remote forcing from the equatorial Pacific Ocean. We use satellite altimetry measurements, an atmospheric reanalysis, and a one-dimensional wave model tuned to simulate observed SSH anomalies. The model solution is decomposed into the part driven by local winds and that driven by SSH variability radiated from the western coast of Australia. Results show that variability radiated from the Australian coast is larger in amplitude than variability driven by local winds in the central and eastern parts of the south Indian Ocean at midlatitudes (between 19° and 33°S), whereas the influence from eastern boundary forcing is confined to the eastern basin at lower latitudes (10° and 17°S). The relative importance of eastern boundary forcing at midlatitudes is due to the weakness of wind stress curl anomalies in the interior of the south Indian Ocean. Our analysis further suggests that SSH variability along the west coast of Australia originates from remote wind forcing in the tropical Pacific, as is pointed out by previous studies. The zonal gradient of SSH between the western and eastern parts of the south Indian Ocean is also mostly controlled by variability radiated from the Australian coast, indicating that interannual variability in meridional geostrophic transport is driven principally by Pacific winds.


2009 ◽  
Vol 66 (7) ◽  
pp. 1455-1466 ◽  
Author(s):  
Juliet C. Hermes ◽  
Chris J. C. Reason

Abstract Hermes, J. C., and Reason, C. J. C. 2009. The sensitivity of the Seychelles–Chagos thermocline ridge to large-scale wind anomalies. – ICES Journal of Marine Science, 66: 1455–1466. The Seychelles–Chagos thermocline ridge (SCTR) in the southwest tropical Indian Ocean is important for regional climate, the Madden–Julian Oscillation, as well as upper-ocean nutrients and related phytoplankton and zooplankton densities. Subsurface variability in this region has been proved to influence the overlying sea surface temperatures, which in turn can influence eastern African rainfall. There is evidence that austral summers with a deeper (shallower) SCTR tend to have more (less) tropical cyclone (TC) days in the Southwest Indian Ocean. The importance of this relationship was underlined during the 2006/2007 austral summer, when areas of Madagascar and central Mozambique experienced devastating floods, because of ten named tropical storms, including several intense TCs, effecting on these areas. At the same time, the SCTR during this season was anomalously deep, partly because of a downwelling Rossby wave that propagated across the South Indian Ocean during the previous austral winter/spring. In this paper, a regional ocean model is used to investigate the effect of remote forcing on this region and to study the sensitivity of the SCTR to changes in the large-scale winds over the South Indian Ocean, with a particular focus on the events of the 2006/2007 austral summer.


2015 ◽  
Vol 122 ◽  
pp. 142-157 ◽  
Author(s):  
Nathalie Van der Putten ◽  
Cyriel Verbruggen ◽  
Svante Björck ◽  
Elisabeth Michel ◽  
Jean-Robert Disnar ◽  
...  

2020 ◽  
Vol 33 (16) ◽  
pp. 6849-6871 ◽  
Author(s):  
Clemens Spensberger ◽  
Thomas Spengler

AbstractJets in the upper troposphere constitute a cornerstone of both synoptic meteorology and climate dynamics, providing a direct link between weather and midlatitude climate variability. Conventionally, jet variability is often inferred indirectly through the variability of geopotential or sea level pressure. As recent findings pointed to physical discrepancies of this interpretation for the Southern Hemisphere, this study presents a global overview of jet variability based on automated jet detections in the upper troposphere. Consistent with previous studies, most ocean basins are dominated by variability patterns comprising either a latitudinal shift of the jet or a so-called pulsing, a broadening/narrowing of the jet distribution without a change in the mean position. Whereas previous studies generally associate a mode of storm track variability with either shifting or pulsing, jet-based variability patterns frequently represent a transition from shifting to pulsing, or vice versa, across the respective ocean basin. In the Northern Hemisphere, jet variability is consistent with geopotential variability, confirming earlier analyses. In the Southern Hemisphere, however, the variability of geopotential and jets often indicates different modes of variability. Notable exceptions are the consistent dominant modes of jet and geopotential variability in the South Pacific and, to a lesser extent, the south Indian Ocean during winter, as well as the dominant modes in the South Atlantic and south Indian Ocean during summer. Finally, tropical variability is shown to modulate the jet distribution in the Northern Hemisphere, which is in line with previous results. The response in the Southern Hemispheric, however, is shown to be markedly different.


2016 ◽  
Vol 29 (19) ◽  
pp. 7089-7102 ◽  
Author(s):  
Dian Putrasahan ◽  
Ben P. Kirtman ◽  
Lisa M. Beal

Abstract The Agulhas leakage transports warm and saline water from the Indian Ocean into the South Atlantic Ocean, forming part of the upper returning arm of the meridional overturning circulation, which can influence climate. Ocean–atmosphere interactions and the strength of Agulhas leakage control sea surface temperature (SST) in the Agulhas leakage corridor, which may in turn affect regional climate variability. In a high-resolution run of the Community Climate System Model (version 3.5; CCSM3.5), it is found that the interannual variability of Agulhas leakage SST is linked to El Niño–Southern Oscillation (ENSO). Anomalous wind stress curl over the south Indian Ocean associated with ENSO excites westward-propagating oceanic Rossby waves that initiate southwestward-propagating anomalies along the coast of Africa. It takes approximately 2 years for this signal to reach the southern tip of South Africa and enter the South Atlantic, where it accounts for 20%–30% of the interannual SSH variability in the Agulhas leakage region. The authors find a similar propagation of anomalies with satellite observations. A similar ENSO cycle along with Rossby wave adjustment is detected in an analogous low-resolution CCSM3.5 run. However, the signal does not propagate all the way along the boundary to affect Agulhas leakage SST. Hence, it is found that high-resolution coupled climate models are necessary to resolve the tropical–subtropical oceanic teleconnection between ENSO and Agulhas leakage SST.


2020 ◽  
Vol 33 (2) ◽  
pp. 749-765 ◽  
Author(s):  
Rondrotiana Barimalala ◽  
Ross C. Blamey ◽  
Fabien Desbiolles ◽  
Chris J. C. Reason

AbstractThe Mozambique Channel trough (MCT) is a cyclonic region prominent in austral summer in the central and southern Mozambique Channel. It first becomes evident in December with a peak in strength in February when the Mozambique Channel is warmest and the Mascarene high (MH) is located farthest southeast in the Indian Ocean basin. The strength and the timing of the mean MCT are linked to that of the cross-equatorial northeasterly monsoon in the tropical western Indian Ocean, which curves as northwesterlies toward northern Madagascar. The interannual variability in the MCT is associated with moist convection over the Mozambique Channel and is modulated by the location of the warm sea surface temperatures in the south Indian Ocean. Variability of the MCT shows a strong relationship with the equatorial westerlies north of Madagascar and the latitudinal extension of the MH. Summers with strong MCT activity are characterized by a prominent cyclonic circulation over the Mozambique Channel, extending to the midlatitudes. These are favorable for the development of tropical–extratropical cloud bands over the southwestern Indian Ocean and trigger an increase in rainfall over the ocean but a decrease over the southern African mainland. Most years with a weak MCT are associated with strong positive south Indian Ocean subtropical dipole events, during which the subcontinent tends to receive more rainfall whereas Madagascar and northern Mozambique are anomalously dry.


2021 ◽  
pp. 1-61
Author(s):  
Hyodae Seo ◽  
Hajoon Song ◽  
Larry W. O’Neill ◽  
Matthew R. Mazloff ◽  
Bruce D. Cornuelle

AbstractThis study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the South Indian Ocean. Comparison of two high-resolution regional coupled model simulations with/without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite lifecycle of synoptic-scale storms subjected to the high THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the South Indian Ocean.


Sign in / Sign up

Export Citation Format

Share Document