scholarly journals A Numerical Study of Aeolian Sand Particle Flow Incorporating Granular Pseudofluid Optimization and Large Eddy Simulation

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 448
Author(s):  
Yang Zhang ◽  
Changsong Wu ◽  
Xiaosi Zhou ◽  
Yuanming Hu ◽  
Yuan Wang ◽  
...  

A numerical investigation of aeolian sand particle flow in atmospheric boundary layer is performed with a Eulerian–Eulerian granular pseudofluid model. In this model, the air turbulence is modelled with a large eddy simulation, and a kinetic–frictional constitutive model incorporating frictional stress and the kinetic theory of granular flow is applied to describe the interparticle movement. The simulated profiles of streamwise sand velocity and sand mass flux agree well with the reported experiments. The quantitative discrepancy between them occurs near the sand bed surface, which is due to the difference in sand sample, but also highlights the potential of the present model in addressing near-surface mass transport. The simulated profiles of turbulent root mean square (RMS) particle velocity suggest that the interparticle collision mainly account for the fluctuation of sand particle movement.

2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Xingsi Han ◽  
Siniša Krajnović

The numerical study reported here deals with the passive flow control around a two-dimensional D-shaped bluff body at a Reynolds number of Re=3.6×104. A small circular control cylinder located in the near wake behind the main bluff body is employed as a local disturbance of the shear layer and the wake. 3D simulations are carried out using a newly developed very large eddy simulation (VLES) method, based on the standard k − ε turbulence model. The aim of this study is to validate the performance of this method for the complex flow control problem. Numerical results are compared with available experimental data, including global flow parameters and velocity profiles. Good agreements are observed. Numerical results suggest that the bubble recirculation length is increased by about 36% by the local disturbance of the small cylinder, which compares well to the experimental observations in which the length is increased by about 38%. A drag reduction of about 18% is observed in the VLES simulation, which is quite close to the experimental value of 17.5%. It is found that the VLES method is able to predict the flow control problem quite well.


Sign in / Sign up

Export Citation Format

Share Document