sand sample
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 38)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 12152
Author(s):  
Jia-Quan Wang ◽  
Zhen-Chao Chang ◽  
Jian-Feng Xue ◽  
Zhi-Nan Lin ◽  
Yi Tang

In view of the dynamic response of geogrid-reinforced gravel under high-speed train load, this paper explores the dynamic characteristics of geogrid-reinforced gravel under semi-sine wave cyclic loading. A number of large scale cyclic triaxial tests were performed on saturated gravelly soil reinforced with geogrid to study the influence of the number of reinforcement layers and loading frequencies on the dynamic responses of reinforced gravelly sand subgrade for high speed rail track. The variation of cumulative axial and volumetric strains, excess pore pressure and resilient modulus with number of loading cycles, loading frequency, and reinforcement arrangement are analyzed. The test results reveal that the cumulative axial strain decreases as the number of reinforcement layers increases, but increases with loading frequency. The resilience modulus increases with the number of reinforcement layers, but decreases as the loading frequency increases. The addition of geogrid can reduce the excess pore water pressure of the sample, but it can slightly enhance the rubber mold embedding effect of the sand sample. As the loading frequency increases, the rubber mold embedding effect gradually weakens.


2021 ◽  
Author(s):  
Ali Al-Taq ◽  
Mohammad Alqam ◽  
Abdullah Alrustum

Abstract Sand production is a common problem in wells completed in unconsolidated or poorly consolidated formation. Several problems are associated with sand production including erosion damage, and plugging of the well and surface production equipment, such as lines, valves, etc. Various mechanical solutions have been implemented to control or eliminate sand production. Screenless completion is an alternative method to conventional sand control techniques. Screenless completion methodology involves sand consolidation, a field-proven technique which offers viable and effective strategies to prevent sand production throughout the life of the well. Sand production can lead to production loss through sand filling up, production tubing restrictions, etc. Consequently, the need for an effective sand control is mandatory. Sand consolidation is a promising technique due to significant advancement in chemicals development for sand control. The challenge with the chemical consolidation systems is their ability to provide the highest possible compressive strength with minimum permeability reduction. A newly developed sand consolidation system was assessed in this study for its effectiveness in both sand consolidation and retained permeability. Two techniques were investigated in preparation/conditioning of sand samples. Following the conditioning state, the sand samples were treated with equivalent amounts of the two components of the newly developed sand consolidation system (Resin-A and Resin-B). A consolidation chamber was used to cure sand under simulated downhole conditions of a temperature (300°F) and a stress of 3,000 psi. The consolidated sand sample prepared using 3 wt% KCl brine preflush was associated with a reduction in plug permeability of more than 99% with a compressive strength of 1,100 psi. In the second method, which employed a diesel preflush in the sand sample preparation step, an average permeability of 63 mD and unconfined compressive strength nearly 900 psi were obtained. The effect of temperature and flow rate on return permeability were investigate. The paper presents in detail the lab work conducted to evaluate/optimize a newly developed chemical system for sand consolidation in HT/HP gas wells.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 181
Author(s):  
Sudip Basack ◽  
Ghritartha Goswami ◽  
Sumanpran Sonowal ◽  
Moses Karakouzian

Saline water intrusion into freshwater aquifers is a major geohydraulic problem relevant to coastal environment. Apart from contaminating the fresh groundwater resources, the saltwater intrusion alters the geotechnical properties of the aquifer materials, affecting the coastal water resource planning and management. The present study focuses on an in-depth laboratory investigation of the influence of saltwater submergence on the geohydraulic properties of sand. The fine sand sample was submerged under saline water of specified concentrations for specific periods, and the alteration in their engineering properties has been studied. It is observed that the specific gravity, dry density, and permeability of fine sand is significantly affected by the period of submergence and saline concentration. The specific gravity of sand particles was observed to increase almost linearly with period of submergence and saline concentration. While the sand dry density decreased fairly linearly with the period of submergence, the same is not being affected significantly by saline concentration. The permeability of sand increased nonlinearly with both period of submergence and saline concentration; for a submergence period of 14 days and saline concentration of 30,000 ppm, the permeability increased to a maximum value.


2021 ◽  
Author(s):  
Zhao Ma ◽  
Lichao Nie ◽  
Zhaoyang Deng ◽  
Xin Yin ◽  
Junfeng Shen ◽  
...  

Abstract Induced polarization method has become a popular method for evaluating formation permeability characteristics in recent years because of its sensitivity to water body and water-bearing pore structure. Especially, the induced polarization relaxation time can reflect the macroscopic characteristics of the pore structure of rock and soil. Therefore, in order to study the relationship between relaxation time and permeability, eight different sizes of quartz sand were used to simulate water-bearing sand layers under different working conditions, and the induced polarization experiment and Darcy seepage experiment were carried out on the same sand sample in this paper, respectively. The experimental results show that the relation time and the evolution of the permeability are closely correlated with the sizes of quartz sand. According to the experimental data, with the particle size of the quartz sand as the link, the power function equation is fitted to better describe the relationship between the permeability and the relation time. It is worth noting that the equations obtained are only empirical equations for quartz sand and are not suitable for general applications.


Author(s):  
Mohammed Bensharada ◽  
Richard Telford ◽  
Ben Stern ◽  
Vince Gaffney

AbstractMass loss at specified temperatures has been used widely to determine amounts of organic matter and carbonate in sediment samples. The loss on ignition (LOI) method is cheap and simple, but is time-consuming and provides information only for specific, pre-determined temperatures. It also requires relatively large sample sizes and is destructive. Thermogravimetric analysis (TGA) is an alternative method for determination of organic and carbonate content in sediment samples, and provides accurate and precise data in a time-efficient manner. We compared results from these two thermal analysis techniques, which were applied to sediment samples from a submerged landscape (Doggerland). An organic-rich peat sample and a silty fine-sand sample were used. An unpaired t-test was used to test agreement and repeatability of the two analytical techniques. One advantage of being able to monitor mass loss throughout the analytical operation is that free and bound moisture losses can be distinguished. TGA is less time-consuming, involves automated sample handling (minimising operator error), and can yield reliable data from sample masses (typically 30–50 mg), which are much smaller than those needed for LOI (typically 3–5 g). The unpaired t-test, along with precision and repeatability analyses led us to conclude that TGA can be used instead of LOI to provide reliable measures of organic matter and carbonate content in sediments, and has several advantages over LOI.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3410
Author(s):  
Sung-Sik Park ◽  
Jung-Shin Lee ◽  
Keun-Byoung Yoon ◽  
Seung-Wook Woo ◽  
Dong-Eun Lee

The use of nontraditional soil stabilizers increases. Various new soil binding agents are under study to augment renewability and sustainability of an earth structure. However, despite increasing interest involved in red clay, there is minimal research investigating the stabilizing red clay with polymer. This paper presents the findings obtained by applying the acrylic polymer and epoxy emulsion as binding agent for red clay and that for sand. The epoxy–hardener ratio, amount of epoxy emulsion, and amount of polymer aqueous solution were manipulated to quantify their effects on red clay and sand, respectively. After compacting a pair of cylindrical samples of which diameter and height are 5 cm and 10 cm, respectively, it is cured for 3 and 7 days in a controlled condition. Each pair is produced to represent the engineering performance at each data point in the solution space. An optimal composition of the binding agents for red clay and that for sand mixture are identified by experimenting every data point. In addition, given lime into each sample, the maximum unconfined compressive strength (UCS) endured by red clay sample and that by sand sample are 2243 and 1493 kPa, respectively. The UCS obtained by the sample mixed with clay and sand reaches 2671 kPa after seven days of curing. It confirms that the addition of lime remarkably improves the UCS. When the clay–sand mixture, of which the ratio is 70:30, includes 5% lime, the UCS of the mixture outperforms. Indeed, these findings, i.e., the optimal proportion of components, may contribute to the increase of initial and long-term strength of an earth structure, hence improving the renewability and sustainability of the earth construction method.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ding-li Su ◽  
Hang Chen ◽  
Xuemiao Xu ◽  
Mengxiong Tang ◽  
He-song Hu

In order to explore the correlation between the compactness of sand core samples and its surface image features and to provide the basis for rapid identification and recognition of core samples in engineering investigation, a typical image data set of sand core samples disturbed by drilling construction in practical engineering has been established, using Python language to compile algorithm to calculate one-dimensional entropy and two-dimensional entropy of 60 groups of sand core samples with different densities. The influence of different sand core compactness on surface entropy characteristics was discussed, and the following conclusions were obtained: (1) Affected by drilling construction and disturbance, the looser the sand core surface particles are, the worse the sorting is and the more irregular the shape characteristics are. There is a close relationship between grain texture and compactness. (2) The calculation results of sand image entropy of one-dimensional entropy and two-dimensional entropy showed that the entropy value of loose, slightly dense, and medium dense sand images is positively correlated with the compactness of sand. (3) The maximum variance of two-dimensional entropy of loose, slightly dense, and medium dense sand image in the same borehole is less than 0.09, and the data variance amplification effect of two-dimensional entropy of image is mainly between different boreholes. (4) The dense feature of core sample structure forms an ordered structure with a gray change boundary, which increases the roughness of the image and leads to the increase of entropy. The two-dimensional entropy reveals the internal correlation mechanism of the influence of the engineering state on the surface structure of sand more clearly than the one-dimensional entropy and more effectively characterizes the dense degree of sand particles. (5) Using two-dimensional entropy to judge the compactness of sand image in the same borehole, the data fluctuation is small, and the algorithm is stable and reliable. The research results have reference values for the detection and analysis of sand sample density in geotechnical engineering investigation.


2021 ◽  
pp. 1-12
Author(s):  
Eloïse Marteau ◽  
Jose Andrade

Abstract Force chains have been regarded as an important hallmark of granular materials. Numerous studies have examined their evolution, properties, and statistics in highly idealized, often circular-shaped, granular assemblies. However, particles found in nature and handled in industries come in a wide variety of shapes. In this paper, we experimentally investigate the robustness of force chains with respect to particle shape. We present a detailed analysis on the particle- to continuum-scale response of granular materials affected by particle shape, that includes the force transmission and mobilized shear strength. The effect of shape is studied by comparing experimental results collected from shear tests performed on 2D analogue circular- and arbitrarily-shaped granular assemblies. Particle shapes are directly discretized from X-Ray CT images of a real sand sample. By inferring individual contact forces using the Granular Element Method (GEM), we provide a direct visualization of the force network, a statistical characterization of the force transmission and a quantitative description of the shear strength in terms of rolling, sliding and interlocking contact mechanisms. We report that force chains are less prevalent in assemblies of arbitrarily-shaped particles than in circular-shaped samples. Furthermore, interlocking is identified as the essential contact mechanism that (1) furnishes a stable structure for force chains to emerge and (2) explains the enhanced shear strength observed in the arbitrarily-shaped samples. These findings highlight the importance of accounting for particle shape to capture and predict the complex mechanical behavior of granular materials across scales.


2021 ◽  
Vol 69 (2) ◽  
pp. 161-170
Author(s):  
Mojtaba G. Mahmoodlu ◽  
Amir Raoof ◽  
Martinus Th. van Genuchten

Abstract This study focuses on the effects of soil textural heterogeneity on longitudinal dispersion under saturation conditions. A series of solute transport experiments were carried out using saturated soil columns packed with two filter sands and two mixtures of these sands, having d50 values of 95, 324, 402, and 480 µm, subjected to four different steady flow rates. Values of the dispersion coefficient (D) were estimated from observed in-situ distributions of calcium chlo-ride, injected as a short nonreactive tracer pulse, at four different locations (11, 18, 25, 36 cm). Analyses of the observed distributions in terms of the standard advection-dispersion equation (ADE) showed that D increased nonlinearly with travel distance and higher Peclet numbers+. The dispersion coefficient of sand sample S1 with its largest average particle size (d 50) was more affected by the average pore-water velocity than sample S4 having the smallest d 50. Results revealed that for a constant velocity, D values of sample S1 were much higher than those of sample S4, which had the smallest d 50. A correlation matrix of parameters controlling the dispersion coefficient showed a relatively strong positive relationship between D and the Peclet number. In contrast, almost no correlation was evident between D and porosity as well as grain size. The results obtained with the four sandy matrices were consistent and proved that the dispersion coefficient depends mainly on the particle size.


2021 ◽  
Author(s):  
Ji Hee Lee ◽  
Jong-Hyun Jung ◽  
Min-Kyu Kim ◽  
Han Na Choe ◽  
Sangyong Lim

Abstract An aerobic, Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, and light pink-colored bacterial strain, designated TS19T, was isolated from a sand sample obtained from a coastal sand dune after exposure to 3 kGy of gamma radiation. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the isolate was a member of the genus Hymenobacter and was most closely related to H. wooponensis WM78T (98.3% similarity). Strain TS19T and H. wooponensis showed resistance to gamma radiation with D10 values (i.e., the dose required to reduce the bacterial population by tenfold) of 7.3 kGy and 3.5 kGy, respectively. The genome of strain TS19T consists of one contig with 4,879,662 bp and has a G+C content of 56.2%. The genome contains 3,955 protein coding sequences, 44 tRNAs, and 12 rRNAs. The predominant fatty acids of strain TS19T were iso-C15:0, summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B), summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), and C16:1 ω5c. The major polar lipids were phosphatidylethanolamine, and one unknown aminophospholipid. The main respiratory quinone was menaquinone-7. Based on the phylogenetic, physiological, and chemotaxonomic characteristics, strain TS19T represents a novel species, for which the name Hymenobacter taeanensis sp. nov. is proposed. The type strain is TS19T (=KCTC 72897T =JCM 34023T).


Sign in / Sign up

Export Citation Format

Share Document