scholarly journals Lattice Boltzmann Method-Based Simulations of Pollutant Dispersion and Urban Physics

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 833
Author(s):  
Jérôme Jacob ◽  
Lucie Merlier ◽  
Felix Marlow ◽  
Pierre Sagaut

Mesocale atmospheric flows that develop in the boundary layer or microscale flows that develop in urban areas are challenging to predict, especially due to multiscale interactions, multiphysical couplings, land and urban surface thermal and geometrical properties and turbulence. However, these different flows can indirectly and directly affect the exposure of people to deteriorated air quality or thermal environment, as well as the structural and energy loads of buildings. Therefore, the ability to accurately predict the different interacting physical processes determining these flows is of primary importance. To this end, alternative approaches based on the lattice Boltzmann method (LBM) wall model large eddy simulations (WMLESs) appear particularly interesting as they provide a suitable framework to develop efficient numerical methods for the prediction of complex large or smaller scale atmospheric flows. In particular, this article summarizes recent developments and studies performed using the hybrid recursive regularized collision model for the simulation of complex or/and coupled turbulent flows. Different applications to the prediction of meteorological humid flows, urban pollutant dispersion, pedestrian wind comfort and pressure distribution on urban buildings including uncertainty quantification are especially reviewed. For these different applications, the accuracy of the developed approach was assessed by comparison with experimental and/or numerical reference data, showing a state of the art performance. Ongoing developments focus now on the validation and prediction of indoor environmental conditions including thermal mixing and pollutant dispersion in different types of rooms equipped with heat, ventilation and air conditioning systems.

Author(s):  
Adrien Mann ◽  
Franck Pérot

Lattice-Boltzmann Method (LBM) is broadly used for the simulation of aeroacoustics problems. This time-domain CFD/CAA approach is transient, explicit and compressible and offers an accurate and efficient solution to simultaneously resolve turbulent flows and their corresponding flow-induced noise radiation. Some examples of applications are ground transportation wind-noise problems, buffeting, Heating, Ventilation, and Air Conditioning (HVAC), fan noise, etc. As shown in previous studies, LBM can also be used to accurately handle linear acoustics problems if the source of noise is not a flow but a simple acoustic source. This set of capabilities makes LBM a suitable candidate for evaluating the acoustics performances of exhaust systems and mufflers. Compared to other traditional acoustics methods, LBM presents the advantage to skip tedious volume meshing operations since the mesh generation is fully automatic. Furthermore, considering that all geometrical details are included in the simulation domain and that LBM is explicit, high frequencies mechanisms up to 10–20 kHz can be captured. The upper frequency limit is indeed solely driven by the spatial resolution used to discretize the system. In this paper, three academic 3-D geometries representative of production muffler systems are studied. Transmission Loss (TL) measurements are performed on three configurations and these experiments are reproduced numerically with LBM. The experimental setup is described in a first part and the numerical details are given in a second part and third part. In particular, the method used to calculate the TL in the simulation and the convergence of the results with respect to the spatial resolution are shown. In a third part, the simulations are compared to the TL measurements and a numerical investigation of the effect of geometry details on the simulated results is proposed. This study highlights the sensitivity of acoustics measurements to geometry details.


Author(s):  
Abhijit S. Joshi ◽  
Kyle N. Grew ◽  
Aldo A. Peracchio ◽  
Wilson K. S. Chiu

At the length scales and temperatures present in a typical SOFC, both continuum and non-continuum transport of fuel and product species are important. Fuel and product transport through a representative, microscopic, two-dimensional (2D) channel present in the porous anode of a solid oxide fuel cell (SOFC) is examined. Non-continuum transport, which can be broken down into the slip, transition and free molecular regimes, is modeled for a ternary system (H2, H2O, and N2) using the Stefan-Maxwell (SM) model, the Dusty-Gas (DG) model and the lattice Boltzmann method (LBM). Results obtained show that the LBM can provide a suitable framework for continuum as well as non-continuum transport in a SOFC up to the transition regime. LBM can also handle complex porous geometries, which are currently intractable by other modeling approaches, e.g. SM and DG. However, further work is required to extend the range of application of the present LBM to the free-molecular flow regime.


2012 ◽  
Vol 700 ◽  
pp. 514-542 ◽  
Author(s):  
Orestis Malaspinas ◽  
Pierre Sagaut

AbstractThe lattice Boltzmann method has become a widely used tool for the numerical simulation of fluid flows and in particular of turbulent flows. In this frame the inclusion of subgrid scale closures is of crucial importance and is not completely understood from the theoretical point of view. Here, we propose a consistent way of introducing subgrid closures in the BGK Boltzmann equation for large eddy simulations of turbulent flows. Based on the Hermite expansion of the velocity distribution function, we construct a hierarchy of subgrid scale terms, which are similar to those obtained for the Navier–Stokes equations, and discuss their inclusion in the lattice Boltzmann method scheme. A link between our approach and the standard way on including eddy viscosity models in the lattice Boltzmann method is established. It is shown that the use of a single modified scalar relaxation time to account for subgrid viscosity effects is not consistent in the compressible case. Finally, we validate the approach in the weakly compressible case by simulating the time developing mixing layer and comparing with experimental results and direct numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document