slip transition
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nadia Ligato ◽  
Elia Strambini ◽  
Federico Paolucci ◽  
Francesco Giazotto

AbstractSuperconducting computing promises enhanced computational power in both classical and quantum approaches. Yet, scalable and fast superconducting memories are not implemented. Here, we propose a fully superconducting memory cell based on the hysteretic phase-slip transition existing in long aluminum nanowire Josephson junctions. Embraced by a superconducting ring, the memory cell codifies the logic state in the direction of the circulating persistent current, as commonly defined in flux-based superconducting memories. But, unlike the latter, the hysteresis here is a consequence of the phase-slip occurring in the long weak link and associated to the topological transition of its superconducting gap. This disentangles our memory scheme from the large-inductance constraint, thus enabling its miniaturization. Moreover, the strong activation energy for phase-slip nucleation provides a robust topological protection against stochastic phase-slips and magnetic-flux noise. These properties make the Josephson phase-slip memory a promising solution for advanced superconducting classical logic architectures or flux qubits.


2021 ◽  
Author(s):  
Nadia Ligato ◽  
Elia Strambini ◽  
Federico Paolucci ◽  
Francesco Giazotto

Abstract Superconducting computing promises enhanced computational power in both classical and quantum approaches. Yet, efficient schemes for scalable and fast superconducting memories are still missing. On the one hand, the large inductance required in magnetic flux-controlled Josephson memories impedes device miniaturization and scalability. On the other hand, schemes based on the ferromagnetic order to store information often degrades superconductivity, and limits the operation speed to the magnetization switching rate of a few GHz. Here, we overcome these limitations with a fully superconducting memory cell based on the hysteretic phase-slip transition existing in long aluminum nanowire Josephson junctions. The memory logic state is codified in the topological index of the junction providing a robust protection against stocastic phase slips and magnetic flux noise. Our direct and non-destructive read-out schemes, based on local DC or AC tunneling spectroscopy, ensure reduced dissipation (≤ 40 fW) thereby yielding a very low energy per bit read-out power consumption as low as ~ 10-24 J as estimated from the typical time response of the structure (≤ 30 ps). The memory, measured over several days, showed no evidence of information degradation up to ~1.1 K, i.e., ~85% of the critical temperature of aluminum. The ease of operation combined with remarkable performance elects the Josephson phase-slip memory as an attractive storage cell to be exploited in advanced superconducting classical logic architectures or flux qubits.


2021 ◽  
Vol 583 ◽  
pp. 448-458
Author(s):  
Valentin Rougier ◽  
Julien Cellier ◽  
Moussa Gomina ◽  
Joël Bréard

Author(s):  
Richard S. Hong ◽  
Eric J. Chan ◽  
Leslie Vogt-Maranto ◽  
Alessandra Mattei ◽  
Ahmad Y. Sheikh ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marion Mathelié-Guinlet ◽  
Felipe Viela ◽  
Giampiero Pietrocola ◽  
Pietro Speziale ◽  
David Alsteens ◽  
...  

Abstract Physical forces have profound effects on cellular behavior, physiology, and disease. Perhaps the most intruiguing and fascinating example is the formation of catch-bonds that strengthen cellular adhesion under shear stresses. Today mannose-binding by the Escherichia coli FimH adhesin remains one of the rare microbial catch-bond thoroughly characterized at the molecular level. Here we provide a quantitative demonstration of a catch-bond in living Gram-positive pathogens using force-clamp spectroscopy. We show that the dock, lock, and latch interaction between staphylococcal surface protein SpsD and fibrinogen is strong, and exhibits an unusual catch-slip transition. The bond lifetime first grows with force, but ultimately decreases to behave as a slip bond beyond a critical force (~1 nN) that is orders of magnitude higher than for previously investigated complexes. This catch-bond, never reported for a staphylococcal adhesin, provides the pathogen with a mechanism to tightly control its adhesive function during colonization and infection.


2019 ◽  
Vol 136 (48) ◽  
pp. 48230 ◽  
Author(s):  
Yinglan Zhang ◽  
Xiaoping Song ◽  
Ying Kan ◽  
Mengmeng Huang ◽  
Cuijie Shi ◽  
...  

2018 ◽  
Vol 113 (24) ◽  
pp. 241602 ◽  
Author(s):  
Alexander Breki ◽  
Michael Nosonovsky

Sign in / Sign up

Export Citation Format

Share Document