scholarly journals Diurnal Dynamics of the Umov Kinetic Energy Density Vector in the Atmospheric Boundary Layer from Minisodar Measurements

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1347
Author(s):  
Alexander Potekaev ◽  
Nikolay Krasnenko ◽  
Liudmila Shamanaeva

The diurnal hourly dynamics of the kinetic energy flux density vector, called the Umov vector, and the mean and turbulent components of the kinetic energy are estimated from minisodar measurements of wind vector components and their variances in the lower 200-meter layer of the atmosphere. During a 24-hour period of continuous minisodar observations, it was established that the mean kinetic energy density dominated in the surface atmospheric layer at altitudes below ~50 m. At altitudes from 50 to 100 m, the relative contributions of the mean and turbulent wind kinetic energy densities depended on the time of the day and the sounding altitude. At altitudes below 100 m, the contribution of the turbulent kinetic energy component is small, and the ratio of the turbulent to mean wind kinetic energy components was in the range 0.01–10. At altitudes above 100 m, the turbulent kinetic energy density sharply increased, and the ratio reached its maximum equal to 100–1000 at altitudes of 150–200 m. A particular importance of the direction and magnitude of the wind effect, that is, of the direction and magnitude of the Umov vector at different altitudes was established. The diurnal behavior of the Umov vector depended both on the time of the day and the sounding altitude. Three layers were clearly distinguished: a near-surface layer at altitudes of 5–15 m, an intermediate layer at altitudes from 15 m to 150 m, and the layer of enhanced turbulence above. The feasibility is illustrated of detecting times and altitudes of maximal and minimal wing kinetic energy flux densities, that is, time periods and altitude ranges most and least favorable for flights of unmanned aerial vehicles. The proposed novel method of determining the spatiotemporal dynamics of the Umov vector from minisodar measurements can also be used to estimate the effect of wind on high-rise buildings and the energy potential of wind turbines.

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 612
Author(s):  
Charles Rogério Paveglio Szinvelski ◽  
Lidiane Buligon ◽  
Gervásio Annes Degrazia ◽  
Tiziano Tirabassi ◽  
Otavio Costa Acevedo ◽  
...  

This study aims to review the physical theory and parametrizations associated to Turbulent Kinetic Energy Density Function (STKE). The bibliographic references bring a broad view of the physical problem, mathematical techniques and modeling of turbulent kinetic energy dynamics in the convective boundary layer. A simplified model based on the dynamical equation for the STKE, in an isotropic and homogeneous turbulent flow regime, is done by formulating and considering the isotropic inertial energy transfer and viscous dissipation terms. This model is described by the Cauchy Problem and solved employing the Method of Characteristics. Therefore, a discussion on Linear First Order Partial Differential Equation, its existence, and uniqueness of solution has been presented. The spectral function solution obtained from its associated characteristic curves and initial condition (Method of Characteristics) reproduces the main features of a modeled physical system. In addition, this modeling allows us to obtain the scaling parameters, which are frequently employed in parameterizations for turbulent dispersion.


2017 ◽  
Vol 830 ◽  
pp. 602-630 ◽  
Author(s):  
E. L. Harrison ◽  
F. Veron

We present results from experiments designed to measure near-surface turbulence generated by rainfall. Laboratory experiments were performed using artificial rain falling at near-terminal velocity in a wind–wave channel filled with synthetic seawater. In this first series of experiments, no wind was generated and the receiving seawater was initially at rest. Rainfall rates from 40 to $190~\text{mm}~\text{h}^{-1}$ were investigated. Subsurface turbulent velocities of the order of $O(10^{-2})~\text{m}~\text{s}^{-1}$ are generated near the interface below the depth of the cavities generated by the rain drop impacts. The turbulence appears independent of rainfall rates. At depth larger than the size of the cavities, the turbulent velocity fluctuations decay as $z^{-3/2}$. Turbulent length scales also appear to scale with the size of the impact cavities. In these seawater experiments, a freshwater lens is established at the water surface due to the rain. At the highest rain rate studied, the resulting buoyancy flux appears to lead to a shallower subsurface mixed layer and a slight decrease of the turbulent kinetic energy dissipation. Finally, direct measurements and inertial estimates of the turbulent kinetic energy dissipation show that approximately 0.1–0.3 % of the kinetic energy flux from the rain is dissipated in the form of turbulence. This is consistent with existing freshwater measurements and suggests that high levels of dissipation occur at depths and scales smaller than those resolved here and/or that other phenomena dissipate a considerable amount of the total kinetic energy flux provided by rainfall.


2013 ◽  
Vol 9 (S301) ◽  
pp. 321-324
Author(s):  
Jakub Ostrowski ◽  
Jadwiga Daszyńska-Daszkiewicz

AbstractWe present results of pulsation analyses of B-type supergiant models with masses of 14 – 18 M⊙, considering evolutionary stages before and after helium core ignition. Using a non-adiabatic pulsation code, we compute instability domains for low-degree modes. For selected models in these two evolutionary phases, we compare properties of pulsation modes. Significant differences are found in oscillation spectra and the kinetic energy density of pulsation modes.


2014 ◽  
Vol 433 ◽  
pp. 79-83 ◽  
Author(s):  
J.P. Peña ◽  
R.R. da Silva ◽  
P. Pureur

2017 ◽  
Vol 38 (17) ◽  
pp. 1552-1559 ◽  
Author(s):  
Johannes M. Dieterich ◽  
William C. Witt ◽  
Emily A. Carter

1999 ◽  
Vol 60 (24) ◽  
pp. 16350-16358 ◽  
Author(s):  
Yan Alexander Wang ◽  
Niranjan Govind ◽  
Emily A. Carter

2022 ◽  
pp. 1-18
Author(s):  
Masashi Takagi ◽  
Junichi Ninomiya ◽  
Nobuhito Mori ◽  
Tomoya Shimura ◽  
Takuya Miyashita

Sign in / Sign up

Export Citation Format

Share Document