scholarly journals Probabilistic Forecast of Low Level Wind Shear of Gimpo, Gimhae, Incheon and Jeju International Airports Using Ensemble Model Output Statistics

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1643
Author(s):  
Hee-Wook Choi ◽  
Yeon-Hee Kim ◽  
Keunhee Han ◽  
Chansoo Kim

Wind shear can occur at all flight levels; however, it is particularly dangerous at low levels, from the ground up to approximately 2000 feet. If this phenomenon can occur during the take-off and landing of an aircraft, it may interfere with the normal altitude change of the aircraft, causing delay and cancellation of the aircraft, as well as economic damage. In this paper, to estimate the probabilistic forecasts of low-level wind shear at Gimpo, Gimhae, Incheon and Jeju International Airports, an Ensemble Model Output Statistics (EMOS) model based on a left-truncated normal distribution with a cutoff zero was applied. Observations were obtained from Gimpo, Gimhae, Incheon and Jeju International Airports and 13 ensemble member forecasts generated from the Limited-Area Ensemble Prediction System (LENS), for the period December 2018 to February 2020. Prior to applying to EMOS models, statistical consistency was analyzed by using a rank histogram and kernel density estimation to identify the uniformity of ensembles with corresponding observations. Performances were evaluated by mean absolute error, continuous ranked probability score and probability integral transform. The results showed that probabilistic forecasts obtained from the EMOS model exhibited better prediction skills when compared to the raw ensembles.

2005 ◽  
Vol 133 (5) ◽  
pp. 1098-1118 ◽  
Author(s):  
Tilmann Gneiting ◽  
Adrian E. Raftery ◽  
Anton H. Westveld ◽  
Tom Goldman

Abstract Ensemble prediction systems typically show positive spread-error correlation, but they are subject to forecast bias and dispersion errors, and are therefore uncalibrated. This work proposes the use of ensemble model output statistics (EMOS), an easy-to-implement postprocessing technique that addresses both forecast bias and underdispersion and takes into account the spread-skill relationship. The technique is based on multiple linear regression and is akin to the superensemble approach that has traditionally been used for deterministic-style forecasts. The EMOS technique yields probabilistic forecasts that take the form of Gaussian predictive probability density functions (PDFs) for continuous weather variables and can be applied to gridded model output. The EMOS predictive mean is a bias-corrected weighted average of the ensemble member forecasts, with coefficients that can be interpreted in terms of the relative contributions of the member models to the ensemble, and provides a highly competitive deterministic-style forecast. The EMOS predictive variance is a linear function of the ensemble variance. For fitting the EMOS coefficients, the method of minimum continuous ranked probability score (CRPS) estimation is introduced. This technique finds the coefficient values that optimize the CRPS for the training data. The EMOS technique was applied to 48-h forecasts of sea level pressure and surface temperature over the North American Pacific Northwest in spring 2000, using the University of Washington mesoscale ensemble. When compared to the bias-corrected ensemble, deterministic-style EMOS forecasts of sea level pressure had root-mean-square error 9% less and mean absolute error 7% less. The EMOS predictive PDFs were sharp, and much better calibrated than the raw ensemble or the bias-corrected ensemble.


2020 ◽  
Vol 148 (2) ◽  
pp. 499-521 ◽  
Author(s):  
Rochelle P. Worsnop ◽  
Michael Scheuerer ◽  
Thomas M. Hamill

Abstract Probabilistic fire-weather forecasts provide pertinent information to assess fire behavior and danger of current or potential fires. Operational fire-weather guidance is provided for lead times fewer than seven days, with most products only providing day 1–3 outlooks. Extended-range forecasts can aid in decisions regarding placement of in- and out-of-state resources, prescribed burns, and overall preparedness levels. We demonstrate how ensemble model output statistics and ensemble copula coupling (ECC) postprocessing methods can be used to provide locally calibrated and spatially coherent probabilistic forecasts of the hot–dry–windy index (and its components). The univariate postprocessing fits the truncated normal distribution to data transformed with a flexible selection of power exponents. Forecast scenarios are generated via the ECC-Q variation, which maintains their spatial and temporal coherence by reordering samples from the univariate distributions according to ranks of the raw ensemble. A total of 20 years of ECMWF reforecasts and ERA-Interim reanalysis data over the continental United States are used. Skill of the forecasts is quantified with the continuous ranked probability score using benchmarks of raw and climatological forecasts. Results show postprocessing is beneficial during all seasons over CONUS out to two weeks. Forecast skill relative to climatological forecasts depends on the atmospheric variable, season, location, and lead time, where winter (summer) generally provides the most (least) skill at the longest lead times. Additional improvements of forecast skill can be achieved by aggregating forecast days. Illustrations of these postprocessed forecasts are explored for a past fire event.


2016 ◽  
Vol 144 (6) ◽  
pp. 2375-2393 ◽  
Author(s):  
Maxime Taillardat ◽  
Olivier Mestre ◽  
Michaël Zamo ◽  
Philippe Naveau

Abstract Ensembles used for probabilistic weather forecasting tend to be biased and underdispersive. This paper proposes a statistical method for postprocessing ensembles based on quantile regression forests (QRF), a generalization of random forests for quantile regression. This method does not fit a parametric probability density function (PDF) like in ensemble model output statistics (EMOS) but provides an estimation of desired quantiles. This is a nonparametric approach that eliminates any assumption on the variable subject to calibration. This method can estimate quantiles using not only members of the ensemble but any predictor available including statistics on other variables. The method is applied to the Météo-France 35-member ensemble forecast (PEARP) for surface temperature and wind speed for available lead times from 3 up to 54 h and compared to EMOS. All postprocessed ensembles are much better calibrated than the PEARP raw ensemble and experiments on real data also show that QRF performs better than EMOS, and can bring a real gain for human forecasters compared to EMOS. QRF provides sharp and reliable probabilistic forecasts. At last, classical scoring rules to verify predictive forecasts are completed by the introduction of entropy as a general measure of reliability.


2015 ◽  
Vol 143 (7) ◽  
pp. 2909-2917 ◽  
Author(s):  
Constantin Junk ◽  
Luca Delle Monache ◽  
Stefano Alessandrini

Abstract An analog-based ensemble model output statistics (EMOS) is proposed to improve EMOS for the calibration of ensemble forecasts. Given a set of analog predictors and corresponding weights, which are optimized with a brute-force continuous ranked probability score (CRPS) minimization, forecasts similar to a current ensemble forecast (i.e., analogs) are searched. The best analogs and the corresponding observations form the training dataset for estimating the EMOS coefficients. To test the new approach for renewable energy applications, wind speed measurements at 100-m height from six measurement towers and wind ensemble forecasts at 100-m height from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) are used. The analog-based EMOS is compared against EMOS, an adaptive and recursive wind vector calibration (AUV), and an analog ensemble applied to ECMWF EPS. It is shown that the analog-based EMOS outperforms EMOS, AUV, and the analog ensemble at all measurement sites in terms of CRPS and Brier score for common and rare events. The CRPS improvements relative to EMOS reach up to 11% and are statistically significant at almost all sites. The reliability of the analog-based EMOS ensemble for rare events is better compared to EMOS and AUV and is similar compared to the analog ensemble.


Sign in / Sign up

Export Citation Format

Share Document