lead times
Recently Published Documents


TOTAL DOCUMENTS

1398
(FIVE YEARS 465)

H-INDEX

52
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Meiyi Hou ◽  
Youmin Tang ◽  
Wansuo Duan ◽  
Zheqi Shen

Abstract This paper investigates the optimal observational array for improving the prediction of the El Niño-Southern Oscillation (ENSO) by exploring sensitive areas for target observations of two types of El Niño events in the whole Pacific. A target observation method based on the particle filter and pre-industrial control runs from six coupled model outputs in Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments are used to quantify the relative importance of the initial accuracy of sea surface temperature (SST) in different Pacific areas. The initial accuracy of the tropical Pacific, subtropical Pacific, and extratropical Pacific can all exert influences on both types of El Niño predictions. The relative importance of different areas changes along with different lead times of predictions. Tropical Pacific observations are crucial in decreasing the root mean square error of predictions of all lead times. Subtropical and extratropical observations play an important role in decreasing the prediction uncertainty, especially when the prediction is made before and throughout boreal spring. To consider different El Niño types and different start months for predictions, a quantitative frequency method based on frequency distribution is applied to determine the optimal observations of ENSO predictions. The final optimal observational array contains 31 grid points, including 21 grid points in the equatorial Pacific and 10 grid points in the north Pacific, suggesting the importance of the initial SST conditions for ENSO predictions not only in the tropical Pacific but also in the area outside the tropics. Furthermore, the predictions made by assimilating SST in sensitive areas have better prediction skills in the verification experiment, which can indicate the validity of the optimal observational array designed in this study.


Author(s):  
Vivek Vishnu ◽  
◽  
Vineet Kumar Dwivedi ◽  

The thesis proposes a method for introducing lean manufacturing using string diagram in an operating CNG high pressure storage tank manufacturing job shop at Jayfe Cylinder Ltd. Haryana. By applying lean manufacturing using process layout diagram to produce part families with similar manufacturing processes and stable demand, plants expect to reduce costs and lead-times and improve quality and delivery performance. The thesis outlines a method for assessing, designing, and implementing lean manufacturing using process layout diagram, and illustrates this process with an example. A manufacturing cell that produces high pressure steel tank container for commercial & automobile customers is implemented at cylinder tank Machining Centers. The conclusion of the thesis highlights the key lessons learned from this process.


Author(s):  
Matthew A. Janiga

Abstract Hansen et al. (2020) found patterns of vertical wind shear, relative humidity (RH) and non-linear interactions between the Madden-Julian Oscillation and El Niño-Southern Oscillation that impact subseasonal Atlantic TC activity. We test whether these patterns can be used to improve subseasonal predictions. To do this we build a statistical-dynamical hybrid model using Navy-ESPC reforecasts as a part of the SUBX project. By adding and removing Navy-ESPC reforecasted values of predictors from a logistic regression model, we assess the contribution of skill from each predictor. We find that Atlantic SSTs and the MJO are the most important factors governing subseasonal Atlantic TC activity. RH contributes little to subseasonal TC predictions, however, shear predictors improve forecast skill at 5-10 day lead times, before forecast shear errors become too large. Non-linear MJO/ENSO interactions did not improve skill compared to separate linear considerations of these factors but did improve the reliability of predictions for high-probability active TC periods. Both non-linear MJO/ENSO interactions and the subseasonal shear signal appear linked to PV streamer activity. This study suggests that correcting model shear biases and improving representation of Rossby wave-breaking is the most efficient way to improve subseasonal Atlantic TC forecasts.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 104
Author(s):  
Jaison Jacob ◽  
Dhanya Shajin ◽  
Achyutha Krishnamoorthy ◽  
Vladimir Vishnevsky ◽  
Dmitry Kozyrev

We consider a queueing inventory with one essential and m optional items for sale. The system evolves in environments that change randomly. There are n environments that appear in a random fashion governed by a Marked Markovian Environment change process. Customers demand the main item plus none, one, or more of the optional items, but were restricted to at most one unit of each optional item. Service time of the main item is phase type distributed and that of optional items have exponential distributions with parameters that depend on the type of the item, as well as the environment under consideration. If the essential item is not available, service will not be provided. The lead times of optional and main items have exponential distributions having parameters that depend on the type of the item. The condition for stability of the system is analyzed by considering a multi-dimensional continuous time Markov chain that represent the evolution of the system. Under this condition, various performance characteristics of the system are derived. In terms of these, a cost function is constructed and optimal control policies of the different types of commodities are investigated. Numerical results are provided to give a glimpse of the system performance.


2021 ◽  
Author(s):  
Suyeon Choi ◽  
Yeonjoo Kim

Abstract. Numerical weather prediction models and probabilistic extrapolation methods using radar images have been widely used for precipitation nowcasting. Recently, machine-learning-based precipitation nowcasting models have also been actively developed for relatively short-term precipitation predictions. This study aimed to develop a radar-based precipitation nowcasting model using an advanced machine learning technique, conditional generative adversarial network (cGAN), which shows high performance in image generation tasks. The cGAN-based precipitation nowcasting model, named Rad-cGAN, developed in this study was trained with a radar reflectivity map of the Soyang-gang Dam region in South Korea with a spatial domain of 128 × 128 km, spatial resolution of 1 km, and temporal resolution of 10 min. The model performance was evaluated using previously developed machine-learning-based precipitation nowcasting models, namely convolutional long short-term memory (ConvLSTM) and U-Net, as well as the baseline Eulerian persistence model. We demonstrated that Rad-cGAN outperformed other models not only for the chosen site but also for the entire domain across the Soyang-gang Dam region. Additionally, the proposed model maintained good performance even with lead times up to 80 min based on the critical success index at the intensity threshold of 0.1 mm h−1, while RainNet and ConvLSTM achieved lead times of 70 and 40 min, respectively. We also demonstrated the successful implementation of the transfer learning technique to efficiently train model with the data from other dam regions in South Korea, such as the Andong and Chungju Dam regions. We used pre-trained model, which was completely trained in the Soyang-gang Dam region. This study confirms that Rad-cGAN can be successfully applied to precipitation nowcasting with longer lead times, and using the transfer learning approach it shows good performance in regions other than the originally trained region.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 183
Author(s):  
Paul Muñoz ◽  
Johanna Orellana-Alvear ◽  
Jörg Bendix ◽  
Jan Feyen ◽  
Rolando Célleri

Worldwide, machine learning (ML) is increasingly being used for developing flood early warning systems (FEWSs). However, previous studies have not focused on establishing a methodology for determining the most efficient ML technique. We assessed FEWSs with three river states, No-alert, Pre-alert and Alert for flooding, for lead times between 1 to 12 h using the most common ML techniques, such as multi-layer perceptron (MLP), logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), and random forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as a case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1 h and 12 h cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. The proposed methodology for selecting the optimal ML technique for a FEWS can be extrapolated to other case studies. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of society of floods.


2021 ◽  
Vol 2 (4) ◽  
pp. 1209-1224
Author(s):  
Cameron Bertossa ◽  
Peter Hitchcock ◽  
Arthur DeGaetano ◽  
Riwal Plougonven

Abstract. Bimodality and other types of non-Gaussianity arise in ensemble forecasts of the atmosphere as a result of nonlinear spread across ensemble members. In this paper, bimodality in 50-member ECMWF ENS-extended ensemble forecasts is identified and characterized. Forecasts of 2 m temperature are found to exhibit widespread bimodality well over a derived false-positive rate. In some regions bimodality occurs in excess of 30 % of forecasts, with the largest rates occurring during lead times of 2 to 3 weeks. Bimodality occurs more frequently in the winter hemisphere with indications of baroclinicity being a factor to its development. Additionally, bimodality is more common over the ocean, especially the polar oceans, which may indicate development caused by boundary conditions (such as sea ice). Near the equatorial region, bimodality remains common during either season and follows similar patterns to the Intertropical Convergence Zone (ITCZ), suggesting convection as a possible source for its development. Over some continental regions the modes of the forecasts are separated by up to 15 °C. The probability density for the modes can be up to 4 times greater than at the minimum between the modes, which lies near the ensemble mean. The widespread presence of such bimodality has potentially important implications for decision makers acting on these forecasts. Bimodality also has implications for assessing forecast skill and for statistical postprocessing: several commonly used skill-scoring methods and ensemble dressing methods are found to perform poorly in the presence of bimodality, suggesting the need for improvements in how non-Gaussian ensemble forecasts are evaluated.


2021 ◽  
Vol 29 (4) ◽  
pp. 253-259
Author(s):  
Bruna Martins ◽  
Cláudia Silva ◽  
Diogo Silva ◽  
Laura Machado ◽  
Miguel Brás ◽  
...  

Abstract This work, developed as a case study, propose, describe, and evaluates an implementation of a pull system in a SME company producing polymeric components for the automotive industry. The production system of the company was based on the push paradigm, which creates high stock levels and high lead times. The main purpose was to develop a pull production system controlled by Kanbans in the painting line. To achieve this goal, this case study demonstrates the application of relevant lean tools, such as, VSM, SMED, Kanban System, Supermarkets and Leveling. Through the SMED’s application, it was possible to reduce the setup times in 38% and make annual earnings of approximately 83000€. The application of a Kanban System, Leveling and Supermarket enabled the WIP’s reduction between injection and painting in 56% and, also, between painting and expedition in 45%. Also, the lead time decreased and the value-added time increased. Thus, this is an exemplary case study for the implementation of a pull system and can be used both by practitioners and researchers interested in this theme.


2021 ◽  
Author(s):  
Hervé Petetin ◽  
Dene Bowdalo ◽  
Pierre-Antoine Bretonnière ◽  
Marc Guevara ◽  
Oriol Jorba ◽  
...  

Abstract. Air quality (AQ) forecasting systems are usually built upon physics-based numerical models that are affected by a number of uncertainty sources. In order to reduce forecast errors, first and foremost the bias, they are often coupled with Model Output Statistics (MOS) modules. MOS methods are statistical techniques used to correct raw forecasts at surface monitoring station locations, where AQ observations are available. In this study, we investigate to what extent AQ forecasts can be improved using a variety of MOS methods, including persistence (PERS), moving average (MA), quantile mapping (QM), Kalman Filter (KF), analogs (AN), and gradient boosting machine (GBM). We apply our analysis to the Copernicus Atmospheric Monitoring Service (CAMS) regional ensemble median O3 forecasts over the Iberian Peninsula during 2018–2019. A key aspect of our study is the evaluation, which is performed using a very comprehensive set of continuous and categorical metrics at various time scales (hourly to daily), along different lead times (1 to 4 days), and using different meteorological input data (forecast vs reanalyzed). Our results show that O3 forecasts can be substantially improved using such MOS corrections and that this improvement goes much beyond the correction of the systematic bias. Although it typically affects all lead times, some MOS methods appear more adversely impacted by the lead time. When considering MOS methods relying on meteorological information and comparing the results obtained with IFS forecasts and ERA5 reanalysis, the relative deterioration brought by the use of IFS is minor, which paves the way for their use in operational MOS applications. Importantly, our results also clearly show the trade-offs between continuous and categorical skills and their dependencies on the MOS method. The most sophisticated MOS methods better reproduce O3 mixing ratios overall, with lowest errors and highest correlations. However, they are not necessarily the best in predicting the highest O3 episodes, for which simpler MOS methods can give better results. Although the complex impact of MOS methods on the distribution and variability of raw forecasts can only be comprehended through an extended set of complementary statistical metrics, our study shows that optimally implementing MOS in AQ forecast systems crucially requires selecting the appropriate skill score to be optimized for the forecast application of interest.


Author(s):  
Roderick van der Linden ◽  
Andreas H. Fink

Abstract The onset of the rainy season is an important date for the mostly rain-fed agricultural practices in Vietnam. Sub-seasonal to seasonal (S2S) ensemble hindcasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) are used to evaluate the predictability of the rainy season onset dates (RSODs) over five climatic sub-regions of Vietnam. The results show that the ECMWF model reproduces well the observed inter-annual variability of RSODs, with a high correlation ranging from 0.60 to 0.99 over all sub-regions at all lead times (up to 40 days) using five different RSOD definitions. For increasing lead times, forecasted RSODs tend to be earlier than the observed ones. Positive skill score values for almost all cases examined in all sub-regions indicate that the model outperforms the observed climatology in predicting the RSOD at sub-seasonal lead times (~28–35 days). However, the model is overall more skilful at shorter lead times. The choice of the RSOD criterion should be considered because it can significantly influence the model performance. The result of analysing the highest skill score for each sub-region at each lead time shows that criteria with higher 5-day rainfall thresholds tend to be more suitable for the forecasts at long lead times. However, the values of mean absolute error are approximately the same as the absolute values of the mean error, indicating that the prediction could be improved by a simple bias correction. The present study shows a large potential to use S2S forecasts to provide meaningful predictions of RSODs for farmers.


Sign in / Sign up

Export Citation Format

Share Document