scholarly journals A New Hybrid Automated Security Framework to Cloud Storage System

Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 37
Author(s):  
Noha E. El-Attar ◽  
Doaa S. El-Morshedy ◽  
Wael A. Awad

The need for cloud storage grows day after day due to its reliable and scalable nature. The storage and maintenance of user data at a remote location are severe issues due to the difficulty of ensuring data privacy and confidentiality. Some security issues within current cloud systems are managed by a cloud third party (CTP), who may turn into an untrustworthy insider part. This paper presents an automated Encryption/Decryption System for Cloud Data Storage (AEDS) based on hybrid cryptography algorithms to improve data security and ensure confidentiality without interference from CTP. Three encryption approaches are implemented to achieve high performance and efficiency: Automated Sequential Cryptography (ASC), Automated Random Cryptography (ARC), and Improved Automated Random Cryptography (IARC) for data blocks. In the IARC approach, we have presented a novel encryption strategy by converting the static S-box in the AES algorithm to a dynamic S-box. Furthermore, the algorithms RSA and Twofish are used to encrypt the generated keys to enhance privacy issues. We have evaluated our approaches with other existing symmetrical key algorithms such as DES, 3DES, and RC2. Although the two proposed ARC and ASC approaches are more complicated, they take less time than DES, DES3, and RC2 in processing the data and obtaining better performance in data throughput and confidentiality. ARC outperformed all of the other algorithms in the comparison. The ARC’s encrypting process has saved time compared with other algorithms, where its encryption time has been recorded as 22.58 s for a 500 MB file size, while the DES, 3DES, and RC2 have completed the encryption process in 44.43, 135.65, and 66.91 s, respectively, for the same file size. Nevertheless, when the file sizes increased to 2.2 GB, the ASC proved its efficiency in completing the encryption process in less time.

2017 ◽  
Vol 7 (1.1) ◽  
pp. 64 ◽  
Author(s):  
S. Renu ◽  
S.H. Krishna Veni

The Cloud computing services and security issues are growing exponentially with time. All the CSPs provide utmost security but the issues still exist. Number of technologies and methods are emerged and futile day by day. In order to overcome this situation, we have also proposed a data storage security system using a binary tree approach. Entire services of the binary tree are provided by a Trusted Third Party (TTP) .TTP is a government or reputed organization which facilitates to protect user data from unauthorized access and disclosure. The security services are designed and implemented by the TTP and are executed at the user side. Data classification, Data Encryption and Data Storage are the three vital stages of the security services. An automated file classifier classify unorganized files into four different categories such as Sensitive, Private, Protected and Public. Applied cryptographic techniques are used for data encryption. File splitting and multiple cloud storage techniques are used for data outsourcing which reduces security risks considerably. This technique offers  file protection even when the CSPs compromise. 


2013 ◽  
Vol 756-759 ◽  
pp. 1275-1279
Author(s):  
Lin Na Huang ◽  
Feng Hua Liu

Cloud storage of high performance is the basic condition for cloud computing. This article introduces the concept and advantage of cloud storage, discusses the infrastructure of cloud storage system as well as the architecture of cloud data storage, researches the details about the design of Distributed File System within cloud data storage, at the same time, puts forward different developing strategies for the enterprises according to the different roles that the enterprises are acting as during the developing process of cloud computing.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Tengfei Tu ◽  
Lu Rao ◽  
Hua Zhang ◽  
Qiaoyan Wen ◽  
Jia Xiao

As information technology develops, cloud storage has been widely accepted for keeping volumes of data. Remote data auditing scheme enables cloud user to confirm the integrity of her outsourced file via the auditing against cloud storage, without downloading the file from cloud. In view of the significant computational cost caused by the auditing process, outsourced auditing model is proposed to make user outsource the heavy auditing task to third party auditor (TPA). Although the first outsourced auditing scheme can protect against the malicious TPA, this scheme enables TPA to have read access right over user’s outsourced data, which is a potential risk for user data privacy. In this paper, we introduce the notion of User Focus for outsourced auditing, which emphasizes the idea that lets user dominate her own data. Based on User Focus, our proposed scheme not only can prevent user’s data from leaking to TPA without depending on data encryption but also can avoid the use of additional independent random source that is very difficult to meet in practice. We also describe how to make our scheme support dynamic updates. According to the security analysis and experimental evaluations, our proposed scheme is provably secure and significantly efficient.


2015 ◽  
pp. 2274-2287
Author(s):  
Yaser Jararweh ◽  
Ola Al-Sharqawi ◽  
Nawaf Abdulla ◽  
Lo'ai Tawalbeh ◽  
Mohammad Alhammouri

In recent years Cloud computing has become the infrastructure which small and medium-sized businesses are increasingly adopting for their IT and computational needs. It provides a platform for high performance and throughput oriented computing, and massive data storage. Subsequently, novel tools and technologies are needed to handle this new infrastructure. One of the biggest challenges in this evolving field is Cloud storage security, and accordingly we propose new optimized techniques based on encryption process to achieve better storage system security. This paper proposes a symmetric block algorithm (CHiS-256) to encrypt Cloud data in efficient manner. Also, this paper presents a novel partially encrypted metadata-based data storage. The (CHiS-256) cipher is implemented as part of the Cloud data storage service to offer a secure, high-performance and throughput Cloud storage system. The results of our proposed algorithm are promising and show the methods to be advantageous in Cloud massive data storage and access applications.


2014 ◽  
Vol 4 (2) ◽  
pp. 1-14 ◽  
Author(s):  
Yaser Jararweh ◽  
Ola Al-Sharqawi ◽  
Nawaf Abdulla ◽  
Lo'ai Tawalbeh ◽  
Mohammad Alhammouri

In recent years Cloud computing has become the infrastructure which small and medium-sized businesses are increasingly adopting for their IT and computational needs. It provides a platform for high performance and throughput oriented computing, and massive data storage. Subsequently, novel tools and technologies are needed to handle this new infrastructure. One of the biggest challenges in this evolving field is Cloud storage security, and accordingly we propose new optimized techniques based on encryption process to achieve better storage system security. This paper proposes a symmetric block algorithm (CHiS-256) to encrypt Cloud data in efficient manner. Also, this paper presents a novel partially encrypted metadata-based data storage. The (CHiS-256) cipher is implemented as part of the Cloud data storage service to offer a secure, high-performance and throughput Cloud storage system. The results of our proposed algorithm are promising and show the methods to be advantageous in Cloud massive data storage and access applications.


Author(s):  
Poovizhi. M ◽  
Raja. G

Using Cloud Storage, users can tenuously store their data and enjoy the on-demand great quality applications and facilities from a shared pool of configurable computing resources, without the problem of local data storage and maintenance. However, the fact that users no longer have physical possession of the outsourced data makes the data integrity protection in Cloud Computing a formidable task, especially for users with constrained dividing resources. From users’ perspective, including both individuals and IT systems, storing data remotely into the cloud in a flexible on-demand manner brings tempting benefits: relief of the burden for storage management, universal data access with independent geographical locations, and avoidance of capital expenditure on hardware, software, and personnel maintenances, etc. To securely introduce an effective Sanitizer and third party auditor (TPA), the following two fundamental requirements have to be met: 1) TPA should be able to capably audit the cloud data storage without demanding the local copy of data, and introduce no additional on-line burden to the cloud user; 2) The third party auditing process should take in no new vulnerabilities towards user data privacy. In this project, utilize and uniquely combine the public auditing protocols with double encryption approach to achieve the privacy-preserving public cloud data auditing system, which meets all integrity checking without any leakage of data. To support efficient handling of multiple auditing tasks, we further explore the technique of online signature to extend our main result into a multi-user setting, where TPA can perform multiple auditing tasks simultaneously. We can implement double encryption algorithm to encrypt the data twice and stored cloud server in Electronic Health Record applications.


Cloud Computing is a robust, less cost, and an effective platform for providing services. Nowadays, it is applied in various services such as consumer business or Information Technology (IT) carried over the Internet. This cloud computing has some risks of security because, the services which are required for its effective compilation is outsources often by the third party providers. This makes the cloud computing more hard to maintain and monitor the security and privacy of data and also its support. This sudden change in the process of storing data towards the cloud computing technology improved the concerns about different issues in security and also the various threats present in this cloud storage. In the concept of security in cloud storage, various threats and challenges are noted by recent researchers. Hence, an effective framework of providing security is required. The main aim of this paper is to analyze various issues in securing the cloud data threats present in the cloud storage and to propose a novel methodology to secure it. This paper also identifies the most crucial components that can be incorporated in the already existing security measures while designing the storage systems based on cloud. This study also provides us to identify all the available solutions for the challenges of security and privacy in cloud storage.


2018 ◽  
Vol 7 (S1) ◽  
pp. 16-19
Author(s):  
B. Rasina Begum ◽  
P. Chithra

Cloud computing provides a scalable platform for large amount of data and processes that work on various applications and services by means of on-demand service. The storage services offered by clouds have become a new profit growth by providing a comparable cheaper, scalable, location-independent platform for managing users’ data. The client uses the cloud storage and enjoys the high end applications and services from a shared group of configurable computing resources using cloud services. It reduces the difficulty of local data storage and maintenance. But it gives severe security issues toward users’ outsourced data. Data Redundancy promotes the data reliability in Cloud Storage. At the same time, it increases storage space, Bandwidth and Security threats due to some server vulnerability. Data Deduplication helps to improve storage utilization. Backup is also less which means less Hardware and Backup media. But it has lots of security issues. Data reliability is a very risky issue in a Deduplication storage system because there is single copy for each file stored in the server which is shared by all the data owners. If such a shared file/chunk was missing, large amount of data becomes unreachable. The main aim of this work is to implement Deduplication System without sacrificing Security in cloud storage. It combines both Deduplication and convergent key cryptography with reduced overhead.


2014 ◽  
Vol 989-994 ◽  
pp. 2543-2546
Author(s):  
Peng Wang ◽  
Fu Zheng Zhang ◽  
Chun Lei Han

With the continuous expansion of the scale data storage, cloud storage technology for its high performance and low cost to get a lot of attention and support. However, the security issues of cloud storage data hinder its further promotion. For the current cloud storage applications of data stored encrypted, a cloud storage encryption scheme based on the separated key and encryption policy is proposed. By strengthening the data encryption key management and data encryption algorithm, the system achieves a more secure storage of data assurance in the technical level.


2019 ◽  
pp. 2059-2083
Author(s):  
Thangavel M. ◽  
Varalakshmi P. ◽  
Sridhar S. ◽  
Sindhuja R.

Cloud computing has given a bloom to the technical world by providing various services. Data storage is the essential factor for the users who are having or working with lots and lots of data. Cloud data storage becomes the only way to store and maintain the large data, which can be accessed from anywhere and anytime. The open nature of cloud computing leads to some security issues. With respect to the cloud data storage, the Cloud Service Provider (CSP) has to provide security for the data outsourced. Data owner will be concerned on the data correctness after outsourcing into the cloud. To verify the data correctness, ensuring the state of data at the cloud data storage is needed, which is performed with the help of a Trusted Third Party Auditor (TTPA). Data owner can also perform the verification task, but it leads to computation cost and communication costs in huge amount. This survey gives a brief on public auditing schemes to explore what are all the system models designed by various researchers.


Sign in / Sign up

Export Citation Format

Share Document