scholarly journals An enhanced security tree to secure cloud data

2017 ◽  
Vol 7 (1.1) ◽  
pp. 64 ◽  
Author(s):  
S. Renu ◽  
S.H. Krishna Veni

The Cloud computing services and security issues are growing exponentially with time. All the CSPs provide utmost security but the issues still exist. Number of technologies and methods are emerged and futile day by day. In order to overcome this situation, we have also proposed a data storage security system using a binary tree approach. Entire services of the binary tree are provided by a Trusted Third Party (TTP) .TTP is a government or reputed organization which facilitates to protect user data from unauthorized access and disclosure. The security services are designed and implemented by the TTP and are executed at the user side. Data classification, Data Encryption and Data Storage are the three vital stages of the security services. An automated file classifier classify unorganized files into four different categories such as Sensitive, Private, Protected and Public. Applied cryptographic techniques are used for data encryption. File splitting and multiple cloud storage techniques are used for data outsourcing which reduces security risks considerably. This technique offers  file protection even when the CSPs compromise. 

In recent years, with the widespread application of cloud computing, more and more enterprises, institutions, and individuals have started to use cloud services to place their data in the cloud. With the rise of cloud services, the accompanying data security issues have received increasing attention. Because data stores are in the cloud, there are many outstanding security issues. This paper proposes a public cloud data security solution based on a trusted third-party platform. The solution is based on an independent and trusted third-party platform, and has certain advantages in data encryption, key management, data awareness, data sharing, and accident responsibility.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 37
Author(s):  
Noha E. El-Attar ◽  
Doaa S. El-Morshedy ◽  
Wael A. Awad

The need for cloud storage grows day after day due to its reliable and scalable nature. The storage and maintenance of user data at a remote location are severe issues due to the difficulty of ensuring data privacy and confidentiality. Some security issues within current cloud systems are managed by a cloud third party (CTP), who may turn into an untrustworthy insider part. This paper presents an automated Encryption/Decryption System for Cloud Data Storage (AEDS) based on hybrid cryptography algorithms to improve data security and ensure confidentiality without interference from CTP. Three encryption approaches are implemented to achieve high performance and efficiency: Automated Sequential Cryptography (ASC), Automated Random Cryptography (ARC), and Improved Automated Random Cryptography (IARC) for data blocks. In the IARC approach, we have presented a novel encryption strategy by converting the static S-box in the AES algorithm to a dynamic S-box. Furthermore, the algorithms RSA and Twofish are used to encrypt the generated keys to enhance privacy issues. We have evaluated our approaches with other existing symmetrical key algorithms such as DES, 3DES, and RC2. Although the two proposed ARC and ASC approaches are more complicated, they take less time than DES, DES3, and RC2 in processing the data and obtaining better performance in data throughput and confidentiality. ARC outperformed all of the other algorithms in the comparison. The ARC’s encrypting process has saved time compared with other algorithms, where its encryption time has been recorded as 22.58 s for a 500 MB file size, while the DES, 3DES, and RC2 have completed the encryption process in 44.43, 135.65, and 66.91 s, respectively, for the same file size. Nevertheless, when the file sizes increased to 2.2 GB, the ASC proved its efficiency in completing the encryption process in less time.


2020 ◽  
Vol 12 (1) ◽  
pp. 50-55
Author(s):  
Mohammed Anwar ◽  
Abed Salman

Cloud computing is a powerful computing paradigm that provides a variety of computing services to its users. An example is storage, which allows individuals and enterprises to outsource their files to remote storage. However, saving private information onto third-party storage increases the security issues of data and privacy protection concerns. For this reason, cloud service providers (CSPs) are required to save an encrypted version of user data. In this paper, a novel encryption technique based on the use of Fully Homomorphic Encryption is presented. The technique uses a superincreasing sequence to derive the key and works on encrypted data with no need for decryption; this yields the same results as performing it on plaintext data. In the proposed technique, the characters are converted to their corresponding ASCII code values, which differs from the binary values produced by other existing techniques.


2019 ◽  
Vol 8 (3) ◽  
pp. 7526-7533

The initial time period of computer science development, technologies were only used for military and government information communication and cryptography were used only to protect the military’s high official communications. Then the continuous evolution of computer technology changes the modern era to a computer dependent transmission and storage of confidential data. And today on demand technology is the cloud computing and it is providing the computing services including servers, storage, databases, networks, software and so on. But cloud main disadvantage is a security issue because the cloud provides the computing amenities by the third-party services so third parties also can easily access the user data and it deals with more confidentiality related problems. So to protect the cloud data we propose the Deep Substitution and Advanced Encryption (DSAE) technique. Encryption converts the plaintext into unintelligible text and the proposed system is a combination of AES (Advanced Encryption Standard) and DSEM (Deep Substitution Encryption Method) algorithms. The DSAE algorithm splits the user data into two parts and one half is send to AES and other half is send to DSEM algorithm for secure the data and store into cloud storage. This paper comprehensively explain the DSAE cryptic process.


2019 ◽  
pp. 2059-2083
Author(s):  
Thangavel M. ◽  
Varalakshmi P. ◽  
Sridhar S. ◽  
Sindhuja R.

Cloud computing has given a bloom to the technical world by providing various services. Data storage is the essential factor for the users who are having or working with lots and lots of data. Cloud data storage becomes the only way to store and maintain the large data, which can be accessed from anywhere and anytime. The open nature of cloud computing leads to some security issues. With respect to the cloud data storage, the Cloud Service Provider (CSP) has to provide security for the data outsourced. Data owner will be concerned on the data correctness after outsourcing into the cloud. To verify the data correctness, ensuring the state of data at the cloud data storage is needed, which is performed with the help of a Trusted Third Party Auditor (TTPA). Data owner can also perform the verification task, but it leads to computation cost and communication costs in huge amount. This survey gives a brief on public auditing schemes to explore what are all the system models designed by various researchers.


Author(s):  
Thangavel M. ◽  
Varalakshmi P. ◽  
Sridhar S. ◽  
Sindhuja R.

Cloud computing has given a bloom to the technical world by providing various services. Data storage is the essential factor for the users who are having or working with lots and lots of data. Cloud data storage becomes the only way to store and maintain the large data, which can be accessed from anywhere and anytime. The open nature of cloud computing leads to some security issues. With respect to the cloud data storage, the Cloud Service Provider (CSP) has to provide security for the data outsourced. Data owner will be concerned on the data correctness after outsourcing into the cloud. To verify the data correctness, ensuring the state of data at the cloud data storage is needed, which is performed with the help of a Trusted Third Party Auditor (TTPA). Data owner can also perform the verification task, but it leads to computation cost and communication costs in huge amount. This survey gives a brief on public auditing schemes to explore what are all the system models designed by various researchers.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Tengfei Tu ◽  
Lu Rao ◽  
Hua Zhang ◽  
Qiaoyan Wen ◽  
Jia Xiao

As information technology develops, cloud storage has been widely accepted for keeping volumes of data. Remote data auditing scheme enables cloud user to confirm the integrity of her outsourced file via the auditing against cloud storage, without downloading the file from cloud. In view of the significant computational cost caused by the auditing process, outsourced auditing model is proposed to make user outsource the heavy auditing task to third party auditor (TPA). Although the first outsourced auditing scheme can protect against the malicious TPA, this scheme enables TPA to have read access right over user’s outsourced data, which is a potential risk for user data privacy. In this paper, we introduce the notion of User Focus for outsourced auditing, which emphasizes the idea that lets user dominate her own data. Based on User Focus, our proposed scheme not only can prevent user’s data from leaking to TPA without depending on data encryption but also can avoid the use of additional independent random source that is very difficult to meet in practice. We also describe how to make our scheme support dynamic updates. According to the security analysis and experimental evaluations, our proposed scheme is provably secure and significantly efficient.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ieuan Walker ◽  
Chaminda Hewage ◽  
Ambikesh Jayal

AbstractA growing trend over the last few years is storage outsourcing, where the concept of third-party data warehousing has become more popular. This trend prompts several interesting privacy and security issues. One of the biggest concerns with third-party data storage providers is accountability. This article, critically reviews two schemas/algorithms that allow users to check the integrity and availability of their outsourced data on untrusted data stores (i.e., third-party data storages). The reviewed schemas are provable data possession (PDP) and proofs of retrievability (POR). Both are cryptographic protocols designed to provide clients the assurance that their data are secure on the untrusted data storages. Furthermore, a conceptual framework is proposed to mitigate the weaknesses of the current storage solutions.


2014 ◽  
Vol 13 (7) ◽  
pp. 4625-4632
Author(s):  
Jyh-Shyan Lin ◽  
Kuo-Hsiung Liao ◽  
Chao-Hsing Hsu

Cloud computing and cloud data storage have become important applications on the Internet. An important trend in cloud computing and cloud data storage is group collaboration since it is a great inducement for an entity to use a cloud service, especially for an international enterprise. In this paper we propose a cloud data storage scheme with some protocols to support group collaboration. A group of users can operate on a set of data collaboratively with dynamic data update supported. Every member of the group can access, update and verify the data independently. The verification can also be authorized to a third-party auditor for convenience.


Author(s):  
Md Equebal Hussain ◽  
Mohammad Rashid Hussain

security is one of the most important concern on cloud computing therefore institutions are hesitating to host their data over cloud. Not all data can be afforded to move on the cloud (example accounts data). The main purpose of moving data over cloud is to reduce cost (infrastructure and maintenance), faster performance, easy upgrade, storage capacity but at the same time security is major concern because cloud is not private but maintained by third party over the internet, security issues like privacy, confidentiality, authorization (what you are allowed to do), authentication (who you are) and accounting (what you actually do) will be encountered. Variety of encryption algorithms required for higher level of security. In this paper we try to provide solution for better security by proposing a combined method of key exchange algorithm with encryption technique. Data stored in cloud can be protected from hackers using proposed solution because even if transmitted key is hacked of no use without user’s private key.


Sign in / Sign up

Export Citation Format

Share Document