scholarly journals A Computational Validation of Water Molecules Adsorption on an NaCl Surface

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 610
Author(s):  
Xiao-Yan Liu ◽  
Jing-Wen Cao ◽  
Xiao-Ling Qin ◽  
Xu-Liang Zhu ◽  
Xu-Hao Yu ◽  
...  

It was reported that a scanning tunneling microscopy (STM) study observed the adsorption geometry of a water monomer and a tetramer on NaCl(100) film. Based on first-principles density functional theory (DFT), the adsorption behavior of water on the NaCl surface was simulated with CASTEP code. The results showed that the water monomer almost lay on the NaCl(001) surface with one O–H bond tilted slightly downward. This was quite different from the STM observations. In fact, the experimental observation was influenced by the Au(111) substrate, which showed an upright form. A recent report on observations of two-dimensional ice structure on Au(111) substrate verified our simulations. However, the water tetramer formed a stable quadrate structure on the surface, which was consistent with observation. The intermolecular hydrogen bonds present more strength than surface adsorption. The simulations presented a clearer picture than experimental observations.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alex Inayeh ◽  
Ryan R. K. Groome ◽  
Ishwar Singh ◽  
Alex J. Veinot ◽  
Felipe Crasto de Lima ◽  
...  

AbstractAlthough the self-assembly of organic ligands on gold has been dominated by sulfur-based ligands for decades, a new ligand class, N-heterocyclic carbenes (NHCs), has appeared as an interesting alternative. However, fundamental questions surrounding self-assembly of this new ligand remain unanswered. Herein, we describe the effect of NHC structure, surface coverage, and substrate temperature on mobility, thermal stability, NHC surface geometry, and self-assembly. Analysis of NHC adsorption and self-assembly by scanning tunneling microscopy and density functional theory have revealed the importance of NHC-surface interactions and attractive NHC-NHC interactions on NHC monolayer structures. A remarkable way these interactions manifest is the need for a threshold NHC surface coverage to produce upright, adatom-mediated adsorption motifs with low surface diffusion. NHC wingtip structure is also critical, with primary substituents leading to the formation of flat-lying NHC2Au complexes, which have high mobility when isolated, but self-assemble into stable ordered lattices at higher surface concentrations. These and other studies of NHC surface chemistry will be crucial for the success of these next-generation monolayers.


2009 ◽  
Vol 80 (24) ◽  
Author(s):  
Jan Frederik Jerratsch ◽  
Niklas Nilius ◽  
Hans-Joachim Freund ◽  
Umberto Martinez ◽  
Livia Giordano ◽  
...  

2017 ◽  
Vol 95 (7) ◽  
Author(s):  
Veronika Brázdová ◽  
David R. Bowler ◽  
Kitiphat Sinthiptharakoon ◽  
Philipp Studer ◽  
Adam Rahnejat ◽  
...  

2016 ◽  
Vol 18 (39) ◽  
pp. 27390-27395 ◽  
Author(s):  
Oscar Díaz Arado ◽  
Maike Luft ◽  
Harry Mönig ◽  
Philipp Alexander Held ◽  
Armido Studer ◽  
...  

With a combination of scanning tunneling microscopy and density functional theory, effects on molecular self-assembly involving two distinct chemical groups were investigated.


Science ◽  
2014 ◽  
Vol 346 (6214) ◽  
pp. 1215-1218 ◽  
Author(s):  
R. Bliem ◽  
E. McDermott ◽  
P. Ferstl ◽  
M. Setvin ◽  
O. Gamba ◽  
...  

Iron oxides play an increasingly prominent role in heterogeneous catalysis, hydrogen production, spintronics, and drug delivery. The surface or material interface can be performance-limiting in these applications, so it is vital to determine accurate atomic-scale structures for iron oxides and understand why they form. Using a combination of quantitative low-energy electron diffraction, scanning tunneling microscopy, and density functional theory calculations, we show that an ordered array of subsurface iron vacancies and interstitials underlies the well-known (2×2)R45° reconstruction of Fe3O4(001). This hitherto unobserved stabilization mechanism occurs because the iron oxides prefer to redistribute cations in the lattice in response to oxidizing or reducing environments. Many other metal oxides also achieve stoichiometry variation in this way, so such surface structures are likely commonplace.


Sign in / Sign up

Export Citation Format

Share Document