scholarly journals Study on Protective Coal Pillar Size Design for Ultra High Voltage Line Tower Mining in Mountain Areas

Designs ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 20
Author(s):  
Feiya Xu ◽  
Wenbing Guo ◽  
Jianli Li

High voltage line towers in mining areas are sensitive to surface deformation caused by mining. Protective coal pillar design for high voltage towers is one of the commonly-used technical measures. Aiming to solve the coal mining safety problem under the Ultra High Voltage transmission line in Sihe Coal Mine of Shanxi Province, the angle and size of protective coal pillars with the vertical line method were analyzed in this paper. The effect of additional displacement caused by landslide or slippage mining in mountain areas and repeated mining was considered. Based on the principle of the vertical line method, the protective coal pillar range and size were calculated. The amount of coal deposited in coal pillars for high voltage line towers was compared and analyzed between the vertical line method and the linear structure method. The results showed that the angle of critical deformation decreased by 2~10° caused by slippage due to mining in a mountainous area, and the angle in the uphill direction of building decreased more than that in the downhill direction; when multi-seams were mined repeatedly, the angle of critical deformation in the lower seam coal mining was reduced by 5~10° compared with that of the upper seam. The protective coal pillar design with the vertical line method can protect the high voltage line towers more effectively, and the amount of protective coal pillars with the vertical line method was 5.8 million tons less, which avoided the waste of coal resources.

2012 ◽  
Vol 204-208 ◽  
pp. 1395-1400
Author(s):  
Chuan Wei Zang ◽  
Chuan Le Ma ◽  
Xue An Zhuang

During the extraction of steeply inclined coal seams, the coal recovery ratio is low be-cause of the coal pillar loss and the production of waste rock is high due to lots of rock roadways which causes serious environmental pollution. This status is conflicted with the strategy of Clean Coal Mining and Green Coal Mining in China, so it is necessary to develop new coal mining method. In this paper, Downward Stratified Gangue Self-filling Method on the Flexible Shield (DSGSMFS) is put forward first. It means that the coal face is lain horizontally and advances along the dip; the flexible shield is used to separate the gob area; the waste rocks are self-filled downward to the top the shield; the coal is broken by drilling and blasting method under the shield, and the broken coal is transported by the electrical winch and the scraping mucker; the flexible shield moves downward automatically by the weight of itself and waste rocks. Field test shows that the strata displacement is effectively controlled by using DSGSMFS, so some coal pillars are recovered; as a result the problem of large quantity gangue and low coal recovery ratio in steep coal seam is solved. DSGSMFS is proved to be a new hopeful and effective coal green mining method.


2022 ◽  
Author(s):  
xinpin ding ◽  
Fengming Li ◽  
Zhenwei Wang ◽  
Sheng Sang ◽  
Mingming Cao

Abstract Due to technology and safety limitations, the amount of coal resources overlying slopes in open pit coal mines is immense. In recent years, this problem has gradually attracted the attention of researchers. How to realize the efficient recovery of the side overburden resources with the premise of ensuring the stability and safety of the slope has become an important topic for the development of opencast mining technology in China. To study the yield failure characteristics of coal pillars and the rock mass migration law of the end slope mining field under the mining condition of the end slope shearer, 2D/3D, integrated, simulation experimental equipment is developed based on similarity theory and efficient region theory. This equipment overcomes the technical problem that the internal failure of the rock mass is invisible and that deformation data are not easily obtained during the simulation of end slope coal mining on an existing experimental platform. Based on the engineering geological conditions of the Ordos mining area in China, a typical engineering geological model of the slope near the horizontal condition is constructed to simulate the process “formation of mining cave group -failure of support coal pillars - instability of slope rock mass”. Based on laser positioning technology and multiangle, oblique photography technology, a panoramic phase 3D laser scanner, high-resolution digital camera and deep space micromonitoring system are comprehensively employed to carry out the whole process tracking monitoring and analysis of the deformation and failure of the supporting coal pillars and slope rock mass. The experiment is verified by numerical simulation. The results show that under the experimental conditions, with an increase in mining cave depth, the vertical stress of the supporting coal pillar increases linearly. At a certain distance before reaching the end of the mining cave, the peak value is reached. At this time, the depth continues to increase, and the stress value decreases sharply. The vertical stress gradually decreases to the original rock stress after a certain distance beyond the end of the mining cave. A certain length of supporting coal pillar from the end of the mining cave will never collapse, which is approximately 2.5~3 times the width of the mining cave. The triggering condition of slope deformation and failure is under the combined action of dynamic and static loads. The actual stress of the supporting coal pillar in the deep part of the geometric centre along the slope of the mining cave group is greater than the ultimate stress, and then large discontinuous deformation of multiple adjacent coal pillars around the central coal pillar is caused by compressive shear failure. The boundary of the final collapse plane range of the roadway group is approximately a closed curve formed by two paraboloids, which are axisymmetric with the No. Ⅳ coal pillar and open opposite. The parabola opening in the shallow part of the slope area is small, and the parabola opening in the deep part of the slope area is large. There is a significant space-time correspondence between the failure of supporting coal pillars and the deformation of the slope surface. According to the failure process of the rock mass structure and the movement and deformation characteristics of the slope surface, the slope after failure can be divided into three areas, and the upper part of the slope is the key area of deformation and instability of the overlying rock mass in the end-slope mining field. The research results provide a theoretical basis for scientific monitoring and stability control of slope deformation coal mining conditions in open-pit mines.


Nature Energy ◽  
2021 ◽  
Author(s):  
Weijiang Xue ◽  
Mingjun Huang ◽  
Yutao Li ◽  
Yun Guang Zhu ◽  
Rui Gao ◽  
...  

2015 ◽  
Vol 713-715 ◽  
pp. 1347-1350
Author(s):  
Yu Fei Rao ◽  
Lin Lin Yu

In the process of China's ultra high-voltage (UHV) construction, Henan UHV power grid is the important part. Summer great load mode of Henan power gird is chosen as the typical method. In the background of completing Nanyang UHV extension project, based on single pole running and double pole running of Hami-Zhengzhou UHVDC project respectively, it is simulated and analyzed. The results indicate that power grid cannot maintain stability when single pole block fault or double pole block fault occurs. Through theoretical analysis and simulation, under UHV AC running certain limit, HVDC latching grid is stable. Under UHV DC running certain limit, HVDC latching grid is stable. Based on continuous simulation, this paper obtained the coordinated operation of area UHV AC and DC.


Sign in / Sign up

Export Citation Format

Share Document