slope surface
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 59)

H-INDEX

9
(FIVE YEARS 5)

2022 ◽  
Author(s):  
xinpin ding ◽  
Fengming Li ◽  
Zhenwei Wang ◽  
Sheng Sang ◽  
Mingming Cao

Abstract Due to technology and safety limitations, the amount of coal resources overlying slopes in open pit coal mines is immense. In recent years, this problem has gradually attracted the attention of researchers. How to realize the efficient recovery of the side overburden resources with the premise of ensuring the stability and safety of the slope has become an important topic for the development of opencast mining technology in China. To study the yield failure characteristics of coal pillars and the rock mass migration law of the end slope mining field under the mining condition of the end slope shearer, 2D/3D, integrated, simulation experimental equipment is developed based on similarity theory and efficient region theory. This equipment overcomes the technical problem that the internal failure of the rock mass is invisible and that deformation data are not easily obtained during the simulation of end slope coal mining on an existing experimental platform. Based on the engineering geological conditions of the Ordos mining area in China, a typical engineering geological model of the slope near the horizontal condition is constructed to simulate the process “formation of mining cave group -failure of support coal pillars - instability of slope rock mass”. Based on laser positioning technology and multiangle, oblique photography technology, a panoramic phase 3D laser scanner, high-resolution digital camera and deep space micromonitoring system are comprehensively employed to carry out the whole process tracking monitoring and analysis of the deformation and failure of the supporting coal pillars and slope rock mass. The experiment is verified by numerical simulation. The results show that under the experimental conditions, with an increase in mining cave depth, the vertical stress of the supporting coal pillar increases linearly. At a certain distance before reaching the end of the mining cave, the peak value is reached. At this time, the depth continues to increase, and the stress value decreases sharply. The vertical stress gradually decreases to the original rock stress after a certain distance beyond the end of the mining cave. A certain length of supporting coal pillar from the end of the mining cave will never collapse, which is approximately 2.5~3 times the width of the mining cave. The triggering condition of slope deformation and failure is under the combined action of dynamic and static loads. The actual stress of the supporting coal pillar in the deep part of the geometric centre along the slope of the mining cave group is greater than the ultimate stress, and then large discontinuous deformation of multiple adjacent coal pillars around the central coal pillar is caused by compressive shear failure. The boundary of the final collapse plane range of the roadway group is approximately a closed curve formed by two paraboloids, which are axisymmetric with the No. Ⅳ coal pillar and open opposite. The parabola opening in the shallow part of the slope area is small, and the parabola opening in the deep part of the slope area is large. There is a significant space-time correspondence between the failure of supporting coal pillars and the deformation of the slope surface. According to the failure process of the rock mass structure and the movement and deformation characteristics of the slope surface, the slope after failure can be divided into three areas, and the upper part of the slope is the key area of deformation and instability of the overlying rock mass in the end-slope mining field. The research results provide a theoretical basis for scientific monitoring and stability control of slope deformation coal mining conditions in open-pit mines.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 103
Author(s):  
Ming-Zhu Guo ◽  
Kun-Sheng Gu ◽  
Chen Wang

There are massive landslides and potential landslides along the Three Rivers Basin in the Qinghai–Tibet Plateau, which pose a serious threat to the Sichuan–Tibet Railway. A normal shaking table model test was conducted to study the dynamic characteristics and dynamic response of a symmetrical counter-bedding rock slope based on the Zongrong Village landslide. The influences of the dynamic parameters, seismic wave type, and a weak intercalated layer on the slope’s dynamic response were considered. The results showed symmetry between the growth trend of the acceleration amplification factor and other research results. When the input wave amplitude was constant, the acceleration amplification factor increased at first and then decreased as the frequency increased. When the input frequency was near the slope’s natural frequency, the acceleration amplification factor increased at first and then decreased with an increase in the input amplitude and reached the maximum value at 0.3 g. The acceleration amplification factor increased linearly with height in the vertical direction inside the slope but increased slowly at first and then sharply along the slope surface, reaching the maximum value at the slope’s top and exhibiting an obvious “elevation effect”. When sinusoidal waves, Wolong waves, and Maoxian waves with the same amplitude were input, the slope’s amplification effect on the bedrock wave was more obvious. The weak intercalated layer showed the phenomenon of “thin layer amplification” and “thick layer attenuation” in response to the input seismic wave. The slope’s failure process can be roughly divided into three stages: (1) the formation of tensile cracks at the top and shear cracks at the toe; (2) the extension of cracks and the sliding of the slope-surface block; (3) the formation of the main sliding surface.


2021 ◽  
Vol 11 (23) ◽  
pp. 11193
Author(s):  
Yuting Yang ◽  
Gang Mei

Geohazards such as landslides, which are often accompanied by surface cracks, have caused great harm to public safety and property. If these surface cracks could be identified in time, this would be of great significance for the monitoring and early warning of geohazards. Currently, the most common method for crack identification is manual detection, which has low efficiency and accuracy. In this paper, a deep transfer learning approach is proposed to effectively and efficiently identify slope surface cracks for the sake of fast monitoring and early warning of geohazards, such as landslides. The essential idea is to employ transfer learning by training (a) a large sample dataset of concrete cracks and (b) a small sample dataset of soil and rock masses’ cracks. In the proposed approach, (1) pretrained crack identification models are constructed based on a large sample dataset of concrete cracks; (2) refined crack identification models are further constructed based on a small sample dataset of soil and rock masses’ cracks. The proposed approach could be applied to conduct UAV surveys on high and steep slopes to provide monitoring and early warning of landslides to ensure the safety of people and property.


2021 ◽  
Author(s):  
Yue Huang ◽  
Huiguo Wu ◽  
Jian Liu ◽  
Yuedong Wu

The effect of wetting-drying cycles on deformation characteristics of an unsaturated clay model slope is investigated in this study. The model slope was compacted using kaolin clay mixed with thirty percent of fine sand. The deformations of slope were measured using particle image velocimetry (PIV) technique. The test results revealed that the model slope deforms mainly within a depth of 300 mm and the displacements of soil mass are nearly perpendicular to slope surface in the first two cycles. Such displacements, however, vanish gradually in the subsequent cycles. On the other hand, the magnitude of displacement along slope surface increases with the number of wetting-drying cycles. The depth affected by wetting-drying cycles increases gradually with the number of wetting-drying cycles and becomes stable finally.


2021 ◽  
Vol 56 (5) ◽  
pp. 340-350
Author(s):  
Ngoc Binh Vu ◽  
Truong Thanh Phi ◽  
Thanh Cong Nguyen ◽  
Hong Thinh Phi ◽  
Quy Nhan Pham ◽  
...  

The research aimed to study 24 rock slope surfaces along the road around Hon Lon Island, Kien Hai district, Kien Giang province, Vietnam. The analytical results have determined slope failure, wedge failure, and toppling, which occurred on almost slope surface and the average percentage of plane failure is the largest. The average percent of plane failure is 19.23%, the wedge failure is 15.35%, and the toppling fault is 6.73%. Besides, the analytical results have also identified the slope surfaces which can be the key blocks: ND-13, 18, 23, 25, 34, 37, 45, 51, 62, 63. The other analytical results show that the existence of key blocks at the rock slope surfaces in the N-S direction, dip to E at the survey locations: ND-13, 23, 63 and dip to W at the survey locations: ND-37, 45; in the NE-SW direction, dip to SE at the survey locations: ND-15, 62 and dip to NW at the survey locations: ND-18, 34; in the NW-SE direction, dip to SW at the survey location ND-51. These results have important significance to support for protecting slope surface safety.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaochao Zhang ◽  
Yujian Zhong ◽  
Xiangjun Pei ◽  
Yuying Duan

The soil of the Loess Plateau is highly susceptible to erosion due to its distinct loess structure with poor water stability and disintegrates easily. Previous research has focused on improving soil strength without considering stability and ecological performance. Comprehensive improvements may be achieved by cross-linked polymers (CLPs), but their effect on loess structure remains unclear. In the present study, we investigate CLPs as a new organic soil stabilizer to improve soil aggregate stability. To determine the effect of CLPs on the stabilization of loess, a series of indoor tests was conducted to assess unconfined compressive strength, water stability, soil-water characteristics, and plant height. The stabilization mechanism was analyzed by comparing the microstructure, mineral composition, and features of functional groups of loess before and after treatment. The results showed that, compared with untreated loess, the unconfined compressive strength and anti-disintegration property of treated loess were significantly increased. The water retention capacity was improved, and the germination rate and growth of plants were promoted. Microscopic analysis showed that the use of CLPs did form new minerals in the loess or change the functional groups, rather, CLPs improved the microstructure, reduced the total volume of pores, and increased the degree of soil compaction. Field tests showed that the erosion of loess hillsides was effectively controlled by CLPs. Under the same erosive conditions, the slope surface treated with CLPs was more intact than the untreated slope surface. Our findings provide new strategies regarding the application of CLPs as soil stabilizers to control loess erosion and promote vegetation restoration.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Li He ◽  
Dongwang Zhong ◽  
Yihe Liu ◽  
Kun Song

The reconstruction and expansion project of oil reserve base often faces the excavation and blasting of the slope and undercrossing tunnel at the same time. Due to the flammable and explosive liquid storage nearby, the tight construction period, and the high requirements of collaborative construction, once the blasting accident occurs, the consequences are unimaginable. To facilitate safe and timely cooperative blasting construction of the slope and undercrossing tunnel, a vibration monitoring test of the slope and tunnel surrounding rock is conducted. The vibration response characteristics of the rock surrounding the slope and tunnel are analyzed, and a mathematical prediction model for the peak particle velocity (PPV) with consideration of the influence of the relative slope gradient (H/D) is established based on dimension analysis theory, which improves the prediction accuracy of PPV at the slope surface. ANSYS/LS-DYNA is used to establish a 3D finite element model for the slope and tunnel, and the dynamic response of the tunnel surrounding rock under blasting load is verified through field monitoring data. A linear statistical relationship between PPV and effective tensile stress (ETS) of the tunnel surrounding rock is established. The PPV safety criterion of the tunnel surrounding rock under blasting load is proposed to be 10 cm/s according to the first strength theory, and hence, the minimum safety distance from the tunnel working face to the slope surface is calculated to be 36 m. Finally, the excavation timing arrangement of the slope and tunnel is proposed, which has been successfully applied to the expansion project, and the construction period has been effectively shortened by 45 days while ensuring construction safety. The research results have great guiding significance to similar cooperative blasting excavation engineering for high slope and adjacent tunnel with safety and efficiency.


Sign in / Sign up

Export Citation Format

Share Document