scholarly journals A Novel Counterfeit Feature Extraction Technique for Exposing Face-Swap Images Based on Deep Learning and Error Level Analysis

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 249
Author(s):  
Weiguo Zhang ◽  
Chenggang Zhao ◽  
Yuxing Li

The quality and efficiency of generating face-swap images have been markedly strengthened by deep learning. For instance, the face-swap manipulations by DeepFake are so real that it is tricky to distinguish authenticity through automatic or manual detection. To augment the efficiency of distinguishing face-swap images generated by DeepFake from real facial ones, a novel counterfeit feature extraction technique was developed based on deep learning and error level analysis (ELA). It is related to entropy and information theory such as cross-entropy loss function in the final softmax layer. The DeepFake algorithm is only able to generate limited resolutions. Therefore, this algorithm results in two different image compression ratios between the fake face area as the foreground and the original area as the background, which would leave distinctive counterfeit traces. Through the ELA method, we can detect whether there are different image compression ratios. Convolution neural network (CNN), one of the representative technologies of deep learning, can extract the counterfeit feature and detect whether images are fake. Experiments show that the training efficiency of the CNN model can be significantly improved by the ELA method. In addition, the proposed technique can accurately extract the counterfeit feature, and therefore achieves outperformance in simplicity and efficiency compared with direct detection methods. Specifically, without loss of accuracy, the amount of computation can be significantly reduced (where the required floating-point computing power is reduced by more than 90%).

Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 29
Author(s):  
Weiguo Zhang ◽  
Chenggang Zhao

New developments in artificial intelligence (AI) have significantly improved the quality and efficiency in generating fake face images; for example, the face manipulations by DeepFake are so realistic that it is difficult to distinguish their authenticity—either automatically or by humans. In order to enhance the efficiency of distinguishing facial images generated by AI from real facial images, a novel model has been developed based on deep learning and error level analysis (ELA) detection, which is related to entropy and information theory, such as cross-entropy loss function in the final Softmax layer, normalized mutual information in image preprocessing, and some applications of an encoder based on information theory. Due to the limitations of computing resources and production time, the DeepFake algorithm can only generate limited resolutions, resulting in two different image compression ratios between the fake face area as the foreground and the original area as the background, which leaves distinctive artifacts. By using the error level analysis detection method, we can detect the presence or absence of different image compression ratios and then use Convolution neural network (CNN) to detect whether the image is fake. Experiments show that the training efficiency of the CNN model can be significantly improved by using the ELA method. And the detection accuracy rate can reach more than 97% based on CNN architecture of this method. Compared to the state-of-the-art models, the proposed model has the advantages such as fewer layers, shorter training time, and higher efficiency.


Author(s):  
Mohamed Yassine Haouam ◽  
Abdallah Meraoumia ◽  
Lakhdar Laimeche ◽  
Issam Bendib

2021 ◽  
pp. 1-1
Author(s):  
Ankit Vijayvargiya ◽  
Vishu Gupta ◽  
Rajesh Kumar ◽  
Nilanjan Dey ◽  
Joao Manuel R. S. Tavares

Sign in / Sign up

Export Citation Format

Share Document