cancer classification
Recently Published Documents


TOTAL DOCUMENTS

1311
(FIVE YEARS 517)

H-INDEX

57
(FIVE YEARS 12)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Emily Kaczmarek ◽  
Jina Nanayakkara ◽  
Alireza Sedghi ◽  
Mehran Pesteie ◽  
Thomas Tuschl ◽  
...  

Abstract Background Accurate cancer classification is essential for correct treatment selection and better prognostication. microRNAs (miRNAs) are small RNA molecules that negatively regulate gene expression, and their dyresgulation is a common disease mechanism in many cancers. Through a clearer understanding of miRNA dysregulation in cancer, improved mechanistic knowledge and better treatments can be sought. Results We present a topology-preserving deep learning framework to study miRNA dysregulation in cancer. Our study comprises miRNA expression profiles from 3685 cancer and non-cancer tissue samples and hierarchical annotations on organ and neoplasticity status. Using unsupervised learning, a two-dimensional topological map is trained to cluster similar tissue samples. Labelled samples are used after training to identify clustering accuracy in terms of tissue-of-origin and neoplasticity status. In addition, an approach using activation gradients is developed to determine the attention of the networks to miRNAs that drive the clustering. Using this deep learning framework, we classify the neoplasticity status of held-out test samples with an accuracy of 91.07%, the tissue-of-origin with 86.36%, and combined neoplasticity status and tissue-of-origin with an accuracy of 84.28%. The topological maps display the ability of miRNAs to recognize tissue types and neoplasticity status. Importantly, when our approach identifies samples that do not cluster well with their respective classes, activation gradients provide further insight in cancer subtypes or grades. Conclusions An unsupervised deep learning approach is developed for cancer classification and interpretation. This work provides an intuitive approach for understanding molecular properties of cancer and has significant potential for cancer classification and treatment selection.


2022 ◽  
Vol 9 (01) ◽  
Author(s):  
Nagma Vohra ◽  
Haoyan Liu ◽  
Alexander H. Nelson ◽  
Keith Bailey ◽  
Magda El-Shenawee

2022 ◽  
Vol 27 (01) ◽  
Author(s):  
Kevin Chew Figueroa ◽  
Bofan Song ◽  
Sumsum Sunny ◽  
Shaobai Li ◽  
Keerthi Gurushanth ◽  
...  

2022 ◽  
Author(s):  
James W. Webber ◽  
Kevin M. Elias

Background: Cancer identification is generally framed as binary classification, normally discrimination of a control group from a single cancer group. However, such models lack any cancer-specific information, as they are only trained on one cancer type. The models fail to account for competing cancer risks. For example, an ostensibly healthy individual may have any number of different cancer types, and a tumor may originate from one of several primary sites. Pan-cancer evaluation requires a model trained on multiple cancer types, and controls, simultaneously, so that a physician can be directed to the correct area of the body for further testing. Methods: We introduce novel neural network models to address multi-cancer classification problems across several data types commonly applied in cancer prediction, including circulating miRNA expression, protein, and mRNA. In particular, we present an analysis of neural network depth and complexity, and investigate how this relates to classification performance. Comparisons of our models with state-of-the-art neural networks from the literature are also presented. Results: Our analysis evidences that shallow, feed-forward neural net architectures offer greater performance when compared to more complex deep feed-forward, Convolutional Neural Network (CNN), and Graph CNN (GCNN) architectures considered in the literature. Conclusion: The results show that multiple cancers and controls can be classified accurately using the proposed models, across a range of expression technologies in cancer prediction. Impact: This study addresses the important problem of pan-cancer classification, which is often overlooked in the literature. The promising results highlight the urgency for further research.


2022 ◽  
Vol 29 (1) ◽  
pp. 102-114
Author(s):  
Marcelo Luis Rodrigues Filho ◽  
Omar Andres Carmona Cortes

Breast cancer is the second most deadly disease worldwide. This severe condition led to 627,000 people dying in 2018. Thus, early detection is critical for improving the patients' lifetime or even curing them. In this context, we can appeal to Medicine 4.0, which exploits machine learning capabilities to obtain a faster and more efficient diagnosis. Therefore, this work aims to apply a simpler convolutional neural network, called VGG-7, for classifying breast cancer in histopathological images. Results have shown that VGG-7 overcomes the performance of VGG-16 and VGG-19, showing an accuracy of 98%, a precision of 99%, a recall of 98%, and an F1 score of 98%.


2022 ◽  
Author(s):  
Rabia Musheer Aziz

Abstract A modified Artificial Bee Colony (ABC) metaheuristics optimization technique is applied for cancer classification, that reduces the classifier's prediction errors and allows for faster convergence by selecting informative genes. Cuckoo search (CS) algorithm was used in the onlooker bee phase (exploitation phase)of ABC to boost performance by maintaining the balance between exploration and exploitation of ABC. Tuned the modified ABC algorithm by using Naïve Bayes (NB) classifiers to improve the further accuracy of the model. Independent Component Analysis (ICA) is used for dimensionality reduction. In the first step, the reduced dataset is optimized by using Modified ABC and after that, in the second step, the optimized dataset is used to train the NB classifier. Extensive experiments were performed for comprehensive comparative analysis of the proposed algorithm with well-known metaheuristic algorithms, namely Genetic Algorithm (GA) when used with the same framework for the classification of six high-dimensional cancer datasets. The comparison results showed that the proposed model with the CS algorithm achieves the highest performance as maximum classification accuracy with less count of selected genes. This shows the effectiveness of the proposed algorithm which is validated using ANOVA for cancer classification.


2022 ◽  
Vol 71 (2) ◽  
pp. 3887-3903
Author(s):  
Abdul Karim ◽  
Azhari Azhari ◽  
Mobeen Shahroz ◽  
Samir Brahim Belhaouri ◽  
Khabib Mustofa

Sign in / Sign up

Export Citation Format

Share Document