scholarly journals Molecular Mean-Field Theory of Ionic Solutions: A Poisson-Nernst-Planck-Bikerman Model

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 550 ◽  
Author(s):  
Jinn-Liang Liu ◽  
Bob Eisenberg

We have developed a molecular mean-field theory—fourth-order Poisson–Nernst–Planck–Bikerman theory—for modeling ionic and water flows in biological ion channels by treating ions and water molecules of any volume and shape with interstitial voids, polarization of water, and ion-ion and ion-water correlations. The theory can also be used to study thermodynamic and electrokinetic properties of electrolyte solutions in batteries, fuel cells, nanopores, porous media including cement, geothermal brines, the oceanic system, etc. The theory can compute electric and steric energies from all atoms in a protein and all ions and water molecules in a channel pore while keeping electrolyte solutions in the extra- and intracellular baths as a continuum dielectric medium with complex properties that mimic experimental data. The theory has been verified with experiments and molecular dynamics data from the gramicidin A channel, L-type calcium channel, potassium channel, and sodium/calcium exchanger with real structures from the Protein Data Bank. It was also verified with the experimental or Monte Carlo data of electric double-layer differential capacitance and ion activities in aqueous electrolyte solutions. We give an in-depth review of the literature about the most novel properties of the theory, namely Fermi distributions of water and ions as classical particles with excluded volumes and dynamic correlations that depend on salt concentration, composition, temperature, pressure, far-field boundary conditions etc. in a complex and complicated way as reported in a wide range of experiments. The dynamic correlations are self-consistent output functions from a fourth-order differential operator that describes ion-ion and ion-water correlations, the dielectric response (permittivity) of ionic solutions, and the polarization of water molecules with a single correlation length parameter.

2011 ◽  
Vol 25 (16) ◽  
pp. 2115-2134 ◽  
Author(s):  
ROBERT JOYNT ◽  
DONG ZHOU ◽  
QIANG-HUA WANG

We present a general formalism for the dissipative dynamics of an arbitrary quantum system in the presence of a classical stochastic process. It is applicable to a wide range of physical situations, and in particular it can be used for qubit arrays in the presence of classical two-level systems (TLS). In this formalism, all decoherence rates appear as eigenvalues of an evolution matrix. Thus the method is linear, and the close analogy to Hamiltonian systems opens up a toolbox of well-developed methods such as perturbation theory and mean-field theory. We apply the method to the problem of a single qubit in the presence of TLS that give rise to pure dephasing 1/f noise and solve this problem exactly.


2003 ◽  
Vol 63 (2) ◽  
pp. 261-267 ◽  
Author(s):  
N. A Denesyuk ◽  
J. P Hansen

2017 ◽  
Vol 146 (18) ◽  
pp. 181103 ◽  
Author(s):  
David M. Wilkins ◽  
David E. Manolopoulos ◽  
Sylvie Roke ◽  
Michele Ceriotti

2012 ◽  
Vol 21 (07) ◽  
pp. 1250069 ◽  
Author(s):  
BIPASHA BHOWMICK ◽  
ABHIJIT BHATTACHARYYA ◽  
G. GANGOPADHYAY

Hypernuclei have been studied within the framework of Relativistic Mean Field theory. The force FSU Gold has been extended to include hyperons. The effective hyperon–nucleon and hyperon–hyperon interactions have been obtained by fitting experimental energies in a number of hypernuclei over a wide range of mass. Calculations successfully describe various features including hyperon separation energy and single particle spectra of single-Λ hypernuclei throughout the periodic table. We also extend this formalism to double-Λ hypernuclei.


1993 ◽  
Vol 3 (3) ◽  
pp. 385-393 ◽  
Author(s):  
W. Helfrich

Sign in / Sign up

Export Citation Format

Share Document