scholarly journals Load-Sharing Model under Lindley Distribution and Its Parameter Estimation Using the Expectation-Maximization Algorithm

Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1329
Author(s):  
Chanseok Park ◽  
Min Wang ◽  
Refah Mohammed Alotaibi ◽  
Hoda Rezk

A load-sharing system is defined as a parallel system whose load will be redistributed to its surviving components as each of the components fails in the system. Our focus is on making statistical inference of the parameters associated with the lifetime distribution of each component in the system. In this paper, we introduce a methodology which integrates the conventional procedure under the assumption of the load-sharing system being made up of fundamental hypothetical latent random variables. We then develop an expectation maximization algorithm for performing the maximum likelihood estimation of the system with Lindley-distributed component lifetimes. We adopt several standard simulation techniques to compare the performance of the proposed methodology with the Newton–Raphson-type algorithm for the maximum likelihood estimate of the parameter. Numerical results indicate that the proposed method is more effective by consistently reaching a global maximum.

Author(s):  
Nadia Hashim Al-Noor ◽  
Shurooq A.K. Al-Sultany

        In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function in terms of their mean squared error values and integrated mean squared error values respectively.


Author(s):  
MINNIE H. PATEL ◽  
H.-S. JACOB TSAO

Empirical cumulative lifetime distribution function is often required for selecting lifetime distribution. When some test items are censored from testing before failure, this function needs to be estimated, often via the approach of discrete nonparametric maximum likelihood estimation (DN-MLE). In this approach, this empirical function is expressed as a discrete set of failure-probability estimates. Kaplan and Meier used this approach and obtained a product-limit estimate for the survivor function, in terms exclusively of the hazard probabilities, and the equivalent failure-probability estimates. They cleverly expressed the likelihood function as the product of terms each of which involves only one hazard probability ease of derivation, but the estimates for failure probabilities are complex functions of hazard probabilities. Because there are no closed-form expressions for the failure probabilities, the estimates have been calculated numerically. More importantly, it has been difficult to study the behavior of the failure probability estimates, e.g., the standard errors, particularly when the sample size is not very large. This paper first derives closed-form expressions for the failure probabilities. For the special case of no censoring, the DN-MLE estimates for the failure probabilities are in closed forms and have an obvious, intuitive interpretation. However, the Kaplan–Meier failure-probability estimates for cases involving censored data defy interpretation and intuition. This paper then develops a simple algorithm that not only produces these estimates but also provides a clear, intuitive justification for the estimates. We prove that the algorithm indeed produces the DN-MLE estimates and demonstrate numerically their equivalence to the Kaplan–Meier-based estimates. We also provide an alternative algorithm.


Sign in / Sign up

Export Citation Format

Share Document