scholarly journals Continuous-Variable Quantum Secret Sharing Based on Thermal Terahertz Sources in Inter-Satellite Wireless Links

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1223
Author(s):  
Chengji Liu ◽  
Changhua Zhu ◽  
Zhihui Li ◽  
Min Nie ◽  
Hong Yang ◽  
...  

We propose a continuous-variable quantum secret sharing (CVQSS) scheme based on thermal terahertz (THz) sources in inter-satellite wireless links (THz-CVQSS). In this scheme, firstly, each player locally preforms Gaussian modulation to prepare a thermal THz state, and then couples it into a circulating spatiotemporal mode using a highly asymmetric beam splitter. At the end, the dealer measures the quadrature components of the received spatiotemporal mode through performing the heterodyne detection to share secure keys with all the players of a group. This design enables that the key can be recovered only by the whole group players’ knowledge in cooperation and neither a single player nor any subset of the players in the group can recover the key correctly. We analyze both the security and the performance of THz-CVQSS in inter-satellite links. Results show that a long-distance inter-satellite THz-CVQSS scheme with multiple players is feasible. This work will provide an effective way for building an inter-satellite quantum communication network.

2003 ◽  
Vol 5 ◽  
pp. 4-4 ◽  
Author(s):  
Andrew M Lance ◽  
Thomas Symul ◽  
Warwick P Bowen ◽  
Tomás Tyc ◽  
Barry C Sanders ◽  
...  

2013 ◽  
Vol 30 (6) ◽  
pp. 060302 ◽  
Author(s):  
Jun-Jun Zhao ◽  
Xiao-Min Guo ◽  
Xu-Yang Wang ◽  
Ning Wang ◽  
Yong-Min Li ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 2411
Author(s):  
Yijun Wang ◽  
Bing Jia ◽  
Yun Mao ◽  
Xuelin Wu ◽  
Ying Guo

Quantum secret sharing (QSS) can usually realize unconditional security with entanglement of quantum systems. While the usual security proof has been established in theoretics, how to defend against the tolerable channel loss in practices is still a challenge. The traditional ( t , n ) threshold schemes are equipped in situation where all participants have equal ability to handle the secret. Here we propose an improved ( t , n ) threshold continuous variable (CV) QSS scheme using weak coherent states transmitting in a chaining channel. In this scheme, one participant prepares for a Gaussian-modulated coherent state (GMCS) transmitted to other participants subsequently. The remaining participants insert independent GMCS prepared locally into the circulating optical modes. The dealer measures the phase and the amplitude quadratures by using double homodyne detectors, and distributes the secret to all participants respectively. Special t out of n participants could recover the original secret using the Lagrange interpolation and their encoded random numbers. Security analysis shows that it could satisfy the secret sharing constraint which requires the legal participants to recover message in a large group. This scheme is more robust against background noise due to the employment of double homodyne detection, which relies on standard apparatuses, such as amplitude and phase modulators, in favor of its potential practical implementations.


2007 ◽  
Vol 24 (12) ◽  
pp. 3312-3315 ◽  
Author(s):  
Han Lian-Fang ◽  
Liu Yi-Min ◽  
Yuan Hao ◽  
Zhang Zhan-Jun

Sign in / Sign up

Export Citation Format

Share Document