heterodyne detection
Recently Published Documents


TOTAL DOCUMENTS

880
(FIVE YEARS 113)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
Vol 9 (6) ◽  
pp. 499-512
Author(s):  
Nikolay Kulchitsky ◽  
Arkadii Naumov ◽  
Vadim Startsev ◽  
Mikhail Dem’yanenko

The paper discusses the problems associated with the development of technology for terahertz radiation detectors. The main physical phenomena and recent progress in various methods of detecting terahertz radiation (direct detection and heterodyne detection) are considered. Advantages and disadvantages of direct detection sensors and sensors with heterodyne detection are discussed. In part 1, a number of features of direct detection are considered and some types of terahertz direct detection detectors are described. Part 2 will describe heterodyne detection and continue to describe some types of modern photonic terahertz receivers.


Author(s):  
Alexander Eduardovich Yachmenev ◽  
Rustam Anvarovich Khabibullin ◽  
Dmitry Sergeevich Ponomarev

Abstract Beginning from the 1990s, an ever-lasting interest in the THz spectroscopy and THz instruments has produced wide progress in the development of high-speed THz detectors. The constantly growing requirements aimed at the increase of spectral resolution, sensitivity, and acquisition rate of THz detectors have attracted much attention in this field till nowadays. In the present review, we summarize the most recent advances in the THz photodetectors based on semiconductor structures with quantum confinement of an electron gas. Their main advantages over existing detectors are fast response time, increased spectral resolution, and multicolor operation thanks to the variability of their designs and band structure engineering. These all allow using them in various important applications as single photon detection, THz heterodyne detection, continuous monitoring of toxic gases, THz free space communications, and radio astronomy, as well.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012054
Author(s):  
A Sh Gazaliev ◽  
M V Moskotin ◽  
V V Belosevich ◽  
M G Rybin ◽  
I A Gayduchenko ◽  
...  

Abstract The growing requirements for mobile communication networks (data transfer rates over 100 Gbps) makes it necessary to use carrier signal with a frequency of at least 100 GHz. This requires the development of cheap and broadband sub-terahertz (sub-THz) detectors. Here we report on our recent efforts toward the development of a heterodyne sub-THz detector based on a single layer graphene two-terminal device integrated with a bowtie antenna on a sapphire substrate. Our detector operates at frequency of 140 GHz, which corresponds to the maximum transmission of THz radiation in the Earth’s atmosphere. The heterodyne detection is achieved by quasi-optical coupling of signals from two sub-THz radiation sources to the same detector. The measured frequency bandwidth is 5.8 GHz.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Cuzminschi ◽  
Alexei Zubarev ◽  
Aurelian Isar

AbstractWe study a Szilard engine based on a Gaussian state of a system consisting of two bosonic modes placed in a noisy channel. As the initial state of the system is taken an entangled squeezed thermal state, and the quantum work is extracted by performing a measurement on one of the two modes. We use the Markovian Kossakowski-Lindblad master equation for describing the time evolution of the open system and the quantum work definition based on the second order Rényi entropy to simulate the engine. We also study the information-work efficiency of the Szilard engine as a function of the system parameters. The efficiency is defined as the ratio of the extractable work averaged over the measurement angle and the erasure work, which is proportional to the information stored in the system. We show that the extractable quantum work increases with the temperature of the reservoir and the squeezing between the modes, average numbers of thermal photons and frequencies of the modes. The work increases also with the strength of the measurement, attaining the maximal values in the case of a heterodyne detection. The extractable work is decreasing by increasing the squeezing parameter of the noisy channel and it oscillates with the phase of the squeezed thermal reservoir. The efficiency mostly has a similar behavior with the extractable quantum work evolution. However information-work efficiency decreases with temperature, while the quantity of the extractable work increases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Teng Tan ◽  
Zhongye Yuan ◽  
Hao Zhang ◽  
Guofeng Yan ◽  
Siyu Zhou ◽  
...  

AbstractSoliton frequency combs generate equally-distant frequencies, offering a powerful tool for fast and accurate measurements over broad spectral ranges. The generation of solitons in microresonators can further improve the compactness of comb sources. However the geometry and the material’s inertness of pristine microresonators limit their potential in applications such as gas molecule detection. Here, we realize a two-dimensional-material functionalized microcomb sensor by asymmetrically depositing graphene in an over-modal microsphere. By using one single pump, spectrally trapped Stokes solitons belonging to distinct transverse mode families are co-generated in one single device. Such Stokes solitons with locked repetition rate but different offsets produce ultrasensitive beat notes in the electrical domain, offering unique advantages for selective and individual gas molecule detection. Moreover, the stable nature of the solitons enables us to trace the frequency shift of the dual-soliton beat-note with uncertainty <0.2 Hz and to achieve real-time individual gas molecule detection in vacuum, via an optoelectronic heterodyne detection scheme. This combination of atomically thin materials and microcombs shows the potential for compact photonic sensing with high performances and offers insights toward the design of versatile functionalized microcavity photonic devices.


2021 ◽  
Vol 146 ◽  
pp. 106694
Author(s):  
Yutao Liu ◽  
Mengdie Gao ◽  
Xiaodong Zeng ◽  
Feng Liu ◽  
Weihong Bi

2021 ◽  
Author(s):  
Luis Ynoquio Herrera ◽  
Euclides Lourenco Chuma ◽  
Sergio Barcelos Fiberwork ◽  
Felipe Maia Meijueiro

Sign in / Sign up

Export Citation Format

Share Document