scholarly journals Multiple Object Tracking in Deep Learning Approaches: A Survey

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2406
Author(s):  
Yesul Park ◽  
L. Minh Dang ◽  
Sujin Lee ◽  
Dongil Han ◽  
Hyeonjoon Moon

Object tracking is a fundamental computer vision problem that refers to a set of methods proposed to precisely track the motion trajectory of an object in a video. Multiple Object Tracking (MOT) is a subclass of object tracking that has received growing interest due to its academic and commercial potential. Although numerous methods have been introduced to cope with this problem, many challenges remain to be solved, such as severe object occlusion and abrupt appearance changes. This paper focuses on giving a thorough review of the evolution of MOT in recent decades, investigating the recent advances in MOT, and showing some potential directions for future work. The primary contributions include: (1) a detailed description of the MOT’s main problems and solutions, (2) a categorization of the previous MOT algorithms into 12 approaches and discussion of the main procedures for each category, (3) a review of the benchmark datasets and standard evaluation methods for evaluating the MOT, (4) a discussion of various MOT challenges and solutions by analyzing the related references, and (5) a summary of the latest MOT technologies and recent MOT trends using the mentioned MOT categories.

Author(s):  
Dimitrios Meimetis ◽  
Ioannis Daramouskas ◽  
Isidoros Perikos ◽  
Ioannis Hatzilygeroudis

2019 ◽  
Vol 13 (4) ◽  
pp. 355-368 ◽  
Author(s):  
Yingkun Xu ◽  
Xiaolong Zhou ◽  
Shengyong Chen ◽  
Fenfen Li

2019 ◽  
Vol 181 (1) ◽  
pp. 28-42 ◽  
Author(s):  
Jonathon A. Gibbs ◽  
Alexandra J. Burgess ◽  
Michael P. Pound ◽  
Tony P. Pridmore ◽  
Erik H. Murchie

Author(s):  
Madison Harasyn ◽  
Wayne S. Chan ◽  
Emma L. Ausen ◽  
David G. Barber

Aerial imagery surveys are commonly used in marine mammal research to determine population size, distribution and habitat use. Analysis of aerial photos involves hours of manually identifying individuals present in each image and converting raw counts into useable biological statistics. Our research proposes the use of deep learning algorithms to increase the efficiency of the marine mammal research workflow. To test the feasibility of this proposal, the existing YOLOv4 convolutional neural network model was trained to detect belugas, kayaks and motorized boats in oblique drone imagery, collected from a stationary tethered system. Automated computer-based object detection achieved the following precision and recall, respectively, for each class: beluga = 74%/72%; boat = 97%/99%; and kayak = 96%/96%. We then tested the performance of computer vision tracking of belugas and manned watercraft in drone videos using the DeepSORT tracking algorithm, which achieved a multiple-object tracking accuracy (MOTA) ranging from 37% – 88% and multiple object tracking precision (MOTP) between 63% – 86%. Results from this research indicate that deep learning technology can detect and track features more consistently than human annotators, allowing for larger datasets to be processed within a fraction of the time while avoiding discrepancies introduced by labeling fatigue or multiple human annotators.


Sign in / Sign up

Export Citation Format

Share Document